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ABSTRACT

Modern video-based endoscopes offer physicians a
wide-angle field of view for minimally-invasive procedures.
Unfortunately, inherent barrel distortion prevents accurate
perception of range. This makes measurement and distance
judgment difficult and causes difficulties in emerging appli-
cations, such as 3D medical-image registration. Such dis-
tortion also arises in other wide field-of-view camera cir-
cumstances. This paper presents a distortion-correction
technique that can automatically calculate correction pa-
rameters, without precise knowledge of horizontal and ver-
tical orientation. The method is applicable to any cam-
era-distortion correction situation. Based on a least-squares
estimation, our proposed algorithm considers line fits in
both field-of-view directions and global consistency that
gives the optimal image center and expansion coefficients.
The method is insensitive to the initial orientation of the
endoscope and provides more exhaustive field-of-view cor-
rection than previously proposed algorithms. The dis-
tortion-correction procedure is demonstrated for endo-
scopic video images of a calibration test pattern, a rubber
bronchial training device, and real human circumstances.
The distortion correction is also shown as a necessary com-
ponent of an image-guided virtual-endoscopy system that
matches endoscope images to corresponding rendered 3D
CT views.

1. INTRODUCTION

Endoscopes are an invaluable tool in pulmonary medicine,
urology, orthopedic surgery and gynecology. They permit
minimally invasive procedures, involving little or no injury
to healthy organs and tissues [1]. Endoscopes, which op-
erate close to their subjects, are designed to have “barrel”
distortion to allow greater detail in the center of the display
combined with a wide-angle field of view [2]. Such a system
puts detail where it is needed most, but results in inconsis-
tent measurements of distance and range due to nonlinear
spatial spreading. In an emerging scenario entailing virtual
endoscopy, distortion correction will be necessary to accu-
rately calculate an endoscope’s position using the corrected
video image registered to a rendered 3D CT image [3]. With
the two sources registered, a CT image-guided system can
be used conceivably to assist a physician in performing more
precise endoscopic procedures. Finally, many wide field-of-
view camera situations produce distorted images that may
require geometric correction.
In general, methods that correct “barrel” distortion must

calculate a distortion center and correct both radial and
tangential components [4]. It is typically assumed in video
camera systems that the distortion is strictly radial, and
tangential correction is unnecessary. Geometric calibration
to reduce camera-induced geometric distortion in images is
well known [2], and the distortion correction can be found
in many ways. Shah et al. used a low-power laser beam
that is adjusted to pass through the optical axis onto an
electronic CCD array to find the optical center [4]. Smith
et al. found distortion parameters using a manual tech-
nique where dot locations were chosen off the screen by
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Figure 1. Results from a previously proposed
method [10]. (a) The original test pattern; (b) An
imperfect trapezoidal-shaped result. The algorithm
can provide somewhat inadequate results, since it
does not require the line fits to be parallel. This
effect becomes greater as the estimated distortion
center gets farther from the actual center.

hand [5]. Tsai proposed a second-order radial correction
for 3D camera calibration using off-the-shelf TV cameras
and lenses [6]. Stefansic et al. [7] used a second-order cor-
rection based on Smith et al. [5], which described a method
for calculating expansion coefficients of orthogonal Cheby-
shev polynomials. Sawhney et al. calibrated a lens with a
third-order correction in the creation of video mosaics [8].
Hein et al. used a compressed look-up table to correct dis-
tortion from magnetic fields applied to an image intensifier
for X-ray CT [9].
Our approach improves upon on a method developed by

Asari et al., who calculate distortion parameters to fit a rec-
tangular grid of dots to a set of adjacent lines [10]. In addi-
tion, we describe an apparatus for taking high-quality cali-
bration images and provide a method to correct live video
from an endoscopic system. Their method offers two ad-
vantages in that the correction coefficients are calculated
in an automatic process and the calibration pattern does
not need to be exactly vertical or horizontal. Thus, pre-
cise mechanical alignment is unnecessary. Their results are
encouraging, but deficiencies remain. Based on their as-
sumptions, each corrected grid line at the chosen direction
(vertical in their paper) may have a different slope and pro-
duce line fits which are not parallel. For example, given a
test pattern shown in Figure 1a, the effect is shown in Fig-
ure 1b. This effect gets more pronounced as the distortion
center is further away from its proper location.
We propose a technique that finds solutions where all

lines have the same slope, so that they are parallel. Unlike
previous approaches, both horizontal and vertical line fits
are necessary in order to find the optimal distortion cen-
ter and proper overall solution. Our paper describes the
method and provides results for test and real images. A
more detailed report of this work has been submitted to a
refereed journal for review [11].

2. PROBLEM STATEMENT AND METHOD

Figure 2 shows variables for distortion space and correc-
tion space. The goal is to derive a method for transforming
the distorted image into a corrected image. The distortion
center is (u′

c, v
′
c) and correction center is (uc, vc). (x

′, y′)
represents the position of a pixel in the distortion image,



(a) (b)
Figure 2. Variables used to show the geometric dot
positions. (a) Distortion space variables; (b) Cor-
rected space variables.

Figure 3. Complete approach for nonlinear endo-
scopic distortion correction. The off-line stage takes
a calibration test pattern as input and generates the
endoscopic correction parameters. Then, these pa-
rameters, implemented as a look-up table, are used
for live endoscopic video image correction.

and (x, y) is a pixel in the corrected image. The dot cen-
ters in both distorted and correction space are defined as

(x
′c
i , y

′c
i ) and (x

c
i , y

c
i ). The distance from distortion center

to a pixel is ρ′ for distorted space and ρ for the corrected
image. The angles between the image pixels and distortion
center are θ′ for the distortion image and θ for the corrected
image. These variables are calculated as follows:

ρ′ =
√
(x′ − u′

c)
2 + (y′ − v′

c)
2, θ′ = arctan

(
y′−v′

c
x′−u′

c

)
.

The vector P in the corrected image space is (refer to Eq.
(2), [10]):

ρ =

√
(x − uc)

2 + (y − vc)
2, θ = arctan

(
y−vc
x−uc

)
.

Since only radial distortion is expected for an endoscope,
the mapping from distortion space to correction space is

ρ =

N∑
n=1

anρ′n, θ = θ′. (1)

After correction of the image, the new pixel location in
the corrected image space that maps the pixel in the dis-
torted image can be obtained as (refer to Eq. (4), [10]):

x = uc + ρ cos θ′, y = vc + ρ sin θ′ .

Least-squares line fitting is applied to the dot centroids
of each grid line. Two steps are needed to calculate the
dot centroids: (1) extraction of the distorted dot pattern

and (2) finding the dot centroids by using a back-mapping
method. Since the test dot pattern conforms to a strict
rectangular grid, we assume a horizontal slope bx

1 for grid
lines in the x direction and one vertical slope by

1 for grid lines
in the y direction of corrected space. Each grid line will have
a different intercept value. The total error is from the sum
of the distances from each dot to the corresponding grid line
fit. Errors are calculated in both the x and y directions. A
best estimate of the expansion coefficients and image center
is obtained through an iterative calculation that minimizes
the least absolute-value error. The following is a summary
of the calibration procedure as diagrammed in Figure 3:
The steps below, described more fully in Section 3, consti-

tute the off-line processing used to calculate the correction
parameters and distortion center:
A. Extraction of distorted dot pattern.
B. Calculation of dot centroids in the corrected space and

back-mapping to the distorted space.
C. Estimation of initial distortion center and corrected im-

age center.
D. Iterative optimal calculation of expansion coefficients

and image center.
After the correction parameters are computed, they can be
used for real-time videoendoscopic image correction. The
corrected images are calculated using a look-up table from
correction pixel values to the input distortion pixels (see
Figure 3). This step is detailed in Section 4.

3. EVALUATE CORRECTION PARAMETERS

The calibration image from the endoscope first needs to be
converted to a binary image for dot processing. This is done
by applying a low-pass filter on the original image and sub-
tracting it from the original image. These image operations
remove intensity variation across the image. This makes
thresholding easier, since only one threshold value is nec-
essary for the entire image. The final result is shown after
thresholding and applying a median filter to remove salt
and pepper noise.
A distortion center is first estimated using the same

method as Asari et al. by interpolating the point where
curvature is zero, based on calculations of curvature from
column-wise and row-wise distorted lines [10]. This is only
useful as an initial approximation and the optimal distor-
tion centers are calculated by repeating the full parameter
calculation over a rectangular search region of possible cen-
ter values and saving the result with the minimum error.
The expansion coefficients are calculated by finding the

{ai} coefficients of the polynomial transform that orients
the centroids of grid dots to a straight line along x and y
direction:

yi = bx
1xij + bx

0i, 1 ≤ j ≤ Ki, 1 ≤ i ≤ Lx.

Here, Ki is the number of dots in row i and Lx is the number
of rows. The variable F x

i is defined similar to (refer to Eq.
7, [10]):

F x
i =

Ki∑
j=1

(yij − bx
1xij − bx

0i)
2,

Similarly, the variables F y
j , by

1 , {by
0j} denote error

and line coefficients on the vertical direction. The
unknowns,bx

1 , {bx
0i} , by

1 ,
{
by
0j

}
, and (uc, vc) are chosen to

minimize the function F:

F =

Lx∑
i=1

F x
i +

Ly∑
j=1

F y
j ,

∂F

∂bαβ
= 0.



where bαβ represents all the b’s. ∂F
∂bαβ

can be considered

mathematically independent for x and y. Therefore, the
minimization of Fx and Fy can be considered separately.
The least-squares estimation discussed below focuses on the
x direction. The results at the y direction will be easily
obtained after that.

bx
1 , {bx

0i} can be calculated from:

∂Fx

∂bαβ
=

Lx∑
i=1

Ki∑
j=1

∂ (yij − bx
1xij − bx

0i)
2

∂bαβ
= 0.

The resulting equation for finding the line fit parameters
through the horizontal dot centroids, assuming all lines have
the same slope, is:

bx
1 =

∑
ij

xijyij −
Lx∑
i=1

(
1

Kx
i
(

Kx
i∑

j=1

xij)(
Kx

i∑
j=1

yij)

)

∑
ij

x2
ij −

Lx∑
i=1

(
1

Kx
i
(

Kx
i∑

j=1

xij)2

) ,

bx
0i =

1

Ki

(
Ki∑
j=1

yij −
(

Ki∑
j=1

xij

)
· bx

1

)
.

The error function Ex is defined as the normalized sum
of the perpendicular distances from each dot centroid point
to its corresponding fitting line:

Ex =

Lx∑
i=1

1

Ki

Ki∑
j=1

∣∣∣∣yij − bx
1xij − bx

0i

(1 + (bx
1)

2)1/2

∣∣∣∣.
Ex is a function of the expansion coefficients since xij and

yij are a function of the corrected range ρ from (1). Since
Ex is defined as an error function, Ex has a positive value
which decreases as the distortion reduces. The main task
now is to find a set of expansion coefficients that minimize
the total error Ex (x direction discussed so far). A global
minimization strategy is used in an iterative procedure to
create new expansion coefficients. The iterative procedure
calculates an error Ex(∆) for each set of new coefficients,
and from the mathematical model we apply the following
recursive relationship:

ax
n (∆ + 1) = ax

n (∆) + αnβEx (∆)
1(

∂Ex(∆)
∂an

) ,

for n = 1, . . . , N where α is the convergence rate parameter,

β is the expansion index, and ∂Ex(∆)
∂an

is the error gradient.

The final coefficient will be the average of the optimized
coefficient values from the different axes:

an =
ax

n + ay
n

2
, n = 1, . . . , N.

4. LIVE ENDOSCOPIC IMAGE CORRECTION

Given the set of correction parameters, live endoscopic
video image correction can now be done (recall Figure 3).
In our application, a look-up table maps points in the cor-
rected space to points in distortion space to efficiently cal-
culate corrected images. This is done as follows. Given
pixel values (x, y), the distortion values are stored in two
arrays:

x′ = Fx(x, y) y′ = Fy(x, y).

This look-up table gives real-valued coordinates correspond-
ing to pixel values in the distorted image. The associated
intensity values can be calculated using either a bilinear
transformation or, more simply, finding the nearest neigh-
bor.
The look-up table is calculated from an inverse mapping

of the polynomial in (1). The inverse mapping is defined as

ρ′ = b1ρ+ b2ρ
2 + ...+ bMρM , (2)

where b1, b2, ..., bM are the inverse polynomial coefficients
and M is the number of coefficients. The elements of the
look-up table are calculated as

Fx(x, y) =

(
M∑

i=1

biρ
i

)
x − ux

ρ
, (3)

Fy(x, y) =

(
M∑

i=1

biρ
i

)
y − vy

ρ
, (4)

with ρ =
√
(x − ux)2 + (y − u2

y). The coefficients of (2) are
solved using least squares as follows. Substitute (1) into (2),
so that:

ρ′ = b1[

N∑
n=1

anρ′n] + ...+ bM [

N∑
n=1

anρ′n]M . (5)

A least-squares equation is formed by subtracting the left
side from the right side (5), squaring the difference, and
integrating over the range of values of ρ′. Now, take the
derivative with respect to bi and set it equal to zero; This
leads to the system of equations:


∫
ρ′[

N∑
n=1

anρ′n]1dρ′

...∫
ρ′[

N∑
n=1

anρ′n]Mdρ′


 =




∫
[

N∑
n=1

anρ′n]2dρ′ · · ·
∫
[

N∑
n=1

anρ′n]M+1dρ′

...
. . .

...∫
[

N∑
n=1

anρ′n]M+1dρ′ · · ·
∫
[

N∑
n=1

anρ′n]2Mdρ′




 b1

...
bM


 .

The limits of the integrals are (0, rmax). Here, rmax is the
maximum pixel distance of any screen point to the distor-
tion center. The integral expressions are solved numerically
using the trapezoidal rule and partitioning the range space
over small increments. Solving the system of equations gives
the inverse coefficients b1, . . . , bM . These coefficients are
used to calculate the look-up tables Fx(x, y) and Fy(x, y)
by applying (3 - 4).

5. EXPERIMENTAL RESULTS

The distorted images were captured using two electronic
videoendoscopy systems (Olympus CV-200). Figure 1a
shows the test dot patterns used for the endoscopic images
in Figure 4. Figure 4a shows the original input video image
digitized directly from the endoscope. The sample image
after dot extraction is shown in Figure 4b. A fifth-order
polynomial fit was calculated for the correction parameters.
The corrected test pattern image is shown in Figure 4c. The



(a) (b)

(c) (d)

Figure 4. Complete results for a test pattern. (a)
Original endoscopic video image; (b) Image after
dot extraction; (c) Corrected image of test pattern;
(d) Corrected dot extraction image.

resulting dot extraction image after correction is shown in
Figure 4d. Notice that the edges of the distorted image ap-
pear too far away and the center of the image appears too
close. The corrected image doesn’t have these problems.
Figure 5 shows the results of distortion correction on an

endoscopic image of a rubber bronchoscopic training de-
vice. This device is a rubber mold of the airways of the
human chest. The device is used to train physicians in bron-
choscopy procedures. Notice in Figure 5a that points in the
outside of the image appear “too far” from the camera and
points in the center appear “too close.” Figure 5b shows
the image in proper perspective for a more consistent per-
ception of range. Figure 6 shows the distortion correction
procedure as a necessary component of an image-guided sys-
tem for registering an endoscope image to a rendered CT
image and calculating the endoscope position [3]. This sys-
tem will help physicians find suspect biopsy sites that can
not be normally seen past the bronchial walls.
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