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Abstract

High-resolution three-dimensional (3D) volumetric images obtained by today’s radiologic imaging scan-
ners are rich in detailed diagnostic information. Despite the many visualization techniques available
to assess such images, there remains information that is challenging to uncover, such as the location
of small structures (e.g., mediastinal lymph nodes, narrowed-airway regions). Recently, sliding thin-
slab (STS) visualization was proposed to improve the visualization of interior structures. These STS
techniques require considerable computation on a general-purpose computer and sometimes depend
on user specifications or extra preprocessing. Further, other rendering approaches that use the general
STS mechanism are conceivable. We introduce two fast direct techniques for STS volume visualization.
The first, a depth (perspective) rendering process, produces an unobstructed, high-contrast 3D view of
the information within a thin volume of image data. Results are a function of relative planar locations.
Thus, rendered views accurately depict the internal properties that were initially captured as position
and intensity. The second method produces a gradient-like view of the intensity changes in a thin
volume. Results can effectively detect the occurrence and location of dramatic tissue variations, often
not visually recognized otherwise. Both STS techniques exploit the concept of temporal coherence to
form sequences of consecutive slabs, using information from previously computed slabs. This permits
rapid real-time computation on a general-purpose computer. Further, these techniques require no
preprocessing, and results are not dependent on user knowledge. Results using 3D CT chest images
show the computational efficiency and visual efficacy of these new STS techniques.
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I. INTRODUCTION

State-of-the-art radiologic imaging scanners offer high-resolution three-dimensional (3D) volumetric
images of the human anatomy. Such 3D images, or volumes, depict considerable information for
precise evaluation and subsequent treatment delivery. Traditionally, a physician evaluates a 3D image
by mentally reconstructing structures visible in the individual two-dimensional (2D) slice images [2].
This approach is difficult, especially for complex regions such as the chest. Further, this approach does
not fully exploit the inherent 3D structure of the data. Computer graphics techniques have shown

much promise for assisting the physician in 3D image evaluation. Among the techniques available are:

1. projection imaging: integrates data along rays cast through an entire volume to produce a 2D



image resembling a chest X-ray [3,4].

2. oblique slice viewing (or multi-planar reconstruction): gives 2D cross-sectional data at arbitrary
orientations [5-T7].

3. curved-section reformatting (or “tube” view): provides mathematically straightened 2D views of
data along an arbitrary path [5,8,9].

4. volume or surface rendering: permits global 3D viewing of structures in a 3D image [2,10,11].

5. virtual endoscopic rendering: provides 3D renderings of interior endoluminal structures [9,12].

Complete systems exist that integrate many of the visual tools above [13,14]. Also, systems have been

proposed for virtual-endoscopic analysis [8,9,12,15-18].

Unfortunately, the techniques noted above tend to obscure small, thin, interior structures, such as
airways, blood vessels, and lymph nodes. Conventional projection images consist of contributions from
all elements in a volume. Elements overlap and obscure information from individual structures. Thus,
small interior structures are typically not visible. 2D oblique views and curved-section views, regardless
of their orientation, often cannot provide enough contextual information to depict small structures.
Both 3D rendering and virtual-endoscopic rendering often require prior removal of obscuring structures
via image segmentation [2]. Thus, the clarity of the remaining rendered data is not assured, since

beneficial data along with undesirable data may be removed.

Recently, Napel et al. proposed sliding thin-slab (STS) visualization as a technique to better visualize
interior structures [19-21]. In this approach a small window, bounded by clipping planes, encloses a
chosen depth of image data. A projection-like image is computed for data within the window to give a
2D STS view. The window can be progressively moved through a volume, forming a sequence of STS
views. The STS technique gives a mechanism for seeing smaller structures, without occlusion from

large, opaque structures, as evidenced by early applications to the chest and colon [19-22].

Work has been done to adapt the STS mechanism for arbitrary movements within a volume [20,
21,23]. Thus far, however, only standard image operations have been used to produce STS images,
such as the maximum intensity projection (MIP), maximum opacity projection, and volume rendering
using an over operator [19,21]. Aside from the MIP, applying these operations requires expertise in
assigning opacity mappings and rendering parameters [7]. Further, running these techniques require
significant memory and considerable computation. Finally, efficient algorithms for STS calculation on
a general-purpose computer do not exist; this is important for dynamic viewing of STS sequences.

We propose two new techniques for fast dynamic STS visualization on a general purpose computer:
the Depth-Weighted Maximum (DWmax) technique and Extreme-Gradient (EG) technique. The DW-
max technique produces striking locally-focused renderings with added depth information. The EG

technique provides a contour-like map (borders) of local structure changes. A significant aspect of our



work is that the algorithms for both techniques exploit the redundant computations that occur when
computing a consecutive sequence of sliding thin slabs. This makes the algorithms computationally
efficient and particularly well suited for interactive viewing, for example, in a virtual-endoscopy sys-
tem [24]. Section II describes our proposed STS methods. Section III presents examples for 3D CT
pulmonary images. Section IV discusses the computational efficiency of the proposed techniques and

Section V offers final comments.

II. METHODS

The beginning of this section overviews notation and terminology. Section II-B gives a hierarchical
series of generic processing algorithms common to both the DWMax and EG STS techniques. Finally,

Section II-C presents low-level algorithms specific to each STS rendering technique.

A. Notation

STS visualization is a form of volume rendering that utilizes a sliding window to step through a
volume of 3D data [2,20]. A window of constant depth defines the set of image slices that are combined
to form a single 2D image slab. The window of data is processed according to the method of choice.
These methods include the new DWmax and the EG, plus the previously proposed maximum-intensity
and minimum-intensity projections, as listed below:

1. Depth-Weighted Mazimum (DWMaxz) — Combines depth and intensity information. This view
gives the perception of 3D depth and transparency without the need for gradient or opacity process-
ing.

2. Fxtreme Gradient (FG) — Merges the maximum and minimum intensities to produce a view that
depicts local intensity changes, such as boundaries of thin structures (i.e., airway or vessel walls)
within a thin volume, without the need for prior segmentation.

3. Maximum-Intensity Projection (MIP) — The concept first utilized as an STS operation by Napel
et al. [19].

4. Minimum-Intensity Projection — A ‘minimum’ version of the MIP [19].

For STS visualization, a parallel-rendering geometry is assumed when computing a slab from a window
(view volume) of image data. This amounts to a straightforward integration of voxels along a ray, or
column, that exist within the window. As we move through the 3D image, the window incrementally
changes and new slabs are computed. As new slabs are computed, a consecutive sequence results.
Viewing such a sequence dynamically can reveal more information on small structures than mere
static viewing of single STS views.

Throughout the paper, I refers to the given 3D volume of image data. The intensity value of a
particular voxel (z,y,z) in this volume is given by I(x,y,z). For simplicity, we assume movements

are made in the z direction. Thus, all algorithms produce transverse-plane (z-y plane) STS views.



Computing STS sequences in either the a (sagittal view) or y (coronal view) direction merely involves
interpreting the data axes differently in the algorithms. Also, the end border effect (insufficient number

of slices to fill the window) is disregarded for simplicity.
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Fig. 1. Schematic illustration of computing a sequence of sliding thin-slabs, S = {sg, s1, s5....}, from an input 3D
image I. The left side of the figure shows the input image data used for composing the slabs. The right side of the
figure depicts the sequence of computed slabs S. The figure depicts the situation for the particular case where the
slab depth ds=7. Vy is the subvolume of image data used to compute slab sg. One 8-voxel column of image data,
labeled vy 4, is singled out of V. This is the data used to compute point s(z,y) in slab sq. Key column locations
a, b, and e are discussed in Subsection II-C.

Vi denotes the subvolume of image data used to compute s;, the :*" slab. This subvolume contains
(ds + 1) slices and is given by:

Vi={I(-+,2), where 1 —1)<z<(i+d:—1)} (1)

The parameter d,, the depth of the slab, is selected relative to the sampling intervals { Az, Ay, Az} of

the image data. For the case of computing transverse-oriented slabs moving in the z direction,

. desired thickness of slabs
d. = int { }

s (2)

where int(-) is the integer function and Az is the image-slice thickness. The slices of V; constituting the
view volume, or field of view, for slab s; are slices I(-,-,7) through I(-,-,i4+ds—1). I(-,-,2— 1), which
served as the initial slice of slab s;_1’s view volume, acts as the initial slice of V; for fast computation.
As we'll see, slab sg is computed brute force. Thus, the lack of a “slice” I(-,-, —1) for V4 is not an issue
when computing the initial slab sg. The complete sequence of slabs is given by S = {sq, 51, $2,...}.
The intensity value of pixel (x,y) in slab s; is given by s;(x,y). The column of image voxels used to
compute s;(x,y) is represented by Vi(z,y). Thus, per (1),

Vilz,y) ={I(z,y,i = 1), I(z,y,1),..., [(z,y, 1 + ds — 1)} (3)

Figure 1 depicts the defined variables. Most of the STS computations do not depend on the slab
index ¢ or particular slab pixel (x,y) being considered. Thus, in the algorithms below, we exclude the
subscript ¢ or notation (z,y) when it unnecessarily complicates the discussion. So, s(x,y) will refer to
a single slab pixel, v, , will refer to the column of data used for computing s(x,y), and v(z) will refer

to the 2" voxel in a column of image data v, ,.



B. Top-Level Algorithms

This subsection presents the top-level algorithms used for computing an STS sequence. Since the
slab sequence S evolves from incremental movements, the data volume V; differs only by two slices
from data volume V;_y, per (1). Thus, many of the computations performed for s;,_; can be saved and
reused for building the next slab s;. This concept is related to the idea of temporal coherence. This
imaging concept states that if one’s point of view varies slowly, then consecutive views change little
[9,25]. Our proposed algorithms draw upon this concept. As Section IV shows, this results in a large
computational reduction.

All STS techniques presented in this paper use the same top level routines for window movement
through the image and placement of a computed slab into the final slab sequence; see Figures 2 and 3.
To start the computation of a slab sequence, the initial slab sq is always computed using a straightfor-
ward brute-force computation (routine BruteSlab). Also at this stage, we retain certain intermediate
processing data in a 2D slab-sized storage buffer H. To compute slab s; and all subsequent slabs, we
enter a fast stage. The processing window is slid forward to define the next needed subvolume V;. V}
differs from V4 by a newly added end slice and a dropped beginning slice. Routine FastSlab consid-
ers these two slices in regards to the previous slab to quickly produce s; and update H. Processing
continues using the fast approach for slabs sy, s3,..., etc.

Routines BruteSlab and FastSlab, shown in Figure 3, are individual slab-computation functions.
Fach routine cycles through the column calculations needed for computing each point (z,y) of a
requested slab and filling the respective buffer values. The functions, BrutePoint and FastPoint,

are “place holders” for technique-specific STS functions, given in Section I1-C.

INITIAL SLAB COMPUTATION (7 = 0)
(so, H) = BruteSlab(Vy, ds, d,)

FAsT SEQUENCE COMPUTATION (i =1,2,3,...,n)
for each slab s; ¢ S

(si, H) = FastSlab(V}, d,, dy, si—1, H)

Fig. 2. Top-level algorithm for computing a slab sequence. BruteSlab computes slab sy brute-force. The subvolume
Vo and slab parameters ds; and d, are input arguments. The 2D array, H, stores data required for fast processing
of the next slab. The array H has one or two elements per (z,y) location, depending on the specific STS technique.
The output at ¢ = 0 is sp and H. FastSlab quickly computes subsequent slabs. For each s;, the input arguments
to the slab-computation routine are V;, ds, d,, s;_1, and H. The outputs are the computed slab s; and the updated
H. Functions BruteSlab and FastSlab are presented in Figure 3.

C. Specific Point Functions

Fach STS technique has its own specific point-level functions. A slab point s;(x,y) is computed from
a column of image values that come directly from the associated subvolume V,. This column contains

the original image values I(x,y,-) for all slices in V;. All columns follow a standard arrangement,



Function BruteSlab(V, d;, d,)
for each point (z,y) € s

(s(x,y),hxyy) = BrutePoint(v, 4, d, d,)
return(s, H)
Function FastSlab(V, d;,
for each point (z,y) €
(s(x,y), hxyy) = FastPoint (vxyy, ds, dy, Spre(2,y), hxyy)

return(s, H)

dva Spre, H)
S

Fig. 3. Generic algorithms for computing individual slabs. The brute-force routine BruteSlab requires a data volume
V' and slab parameters, d; and d,. BrutePoint computes an individual slab point s(z,y) and voxel-level buffer
results hy,, where h, y=H(z,y, ). For fast calculations, FastSlab requires V, d;, dy, and H. The previously
computed slab s,,. may also be required. For each (z,y), routine FastPoint uses the corresponding column of
image data associated with (z,y) to return a slab point value s, , and an updated h, ,. Point routines BrutePoint
and FastPoint, specific to each particular STS technique, are discussed in Section I1-C.

regardless of slab size or slab technique. Three column elements have special significance. They are:
vz 4(0) and v, (1), the base values of the previous and present view volumes; and v, ,(d;), the final
column element. These key elements will be denoted v(a), v(b), and v(e) in the point functions; recall

Figure 1.

C.1 Depth-Weighted Maximum (DWmax) Point Functions

Figure 4 gives a model of the DWMax technique. DWmax interprets sight as a process of peering
through a group of progressive planes. These planes are layered one after another, along a plane’s
normal. (or along the path of an ideal X-ray). DWDMax gives the front visual plane the greatest
intensity. Successive planes get diminishing intensity, based on distance. But, to retain the selectivity
of maximum intensity projection, the overall brightest value along this fading line of sight passes as
the perceived value. With this viewing mechanism, both depth and intensity are integrated.

Depth weighting of column values is central to DWMax. These weights are based on two parameters:
the field of view d; and depth of vision d,. Consider Figure 1 again. For a given column of data (line of
sight!) v, ,, the base slice, or slab base, is the first plane in the line of sight for the slab. The depth of
vision d, is the distance into an image that is visible from the base slice. The field of view d;, defined
by (2), is the slice depth of the incoming image data that will be processed from the base slice. A
column element’s depth weight w; is a function of the element’s slice location within the window (i.e.,

column index) and viewing parameters:

w(i) =d, — (i —1) (4)

where? =1, 2, -- -, ds. Weighting is largest at the base slice, where it is equal to the depth of vision d,,.
The depth weight decreases with each slice movement from the base. Very importantly, these weights
are based strictly on the viewing geometry: A windowed voxel’s depth weight is not a function of its

individual intensity nor is it a function of the intensities of its neighboring voxels. Thus, a DWmax



slab point s(x,y) is the normalized (by d,) maximum value from the depth-weighted values of the

column v,

(5)

[0(0) xw(®)]  [0(2) # w(2)] [o(dy = 1) s w(dy = D] [o(e) #w(e)]
S(x’y):max( a4 . 4 )
The maximum operation of DWmax permits the observer to see distant, but bright, occluded objects.
The depth weighting, however, keeps such objects in proper perspective: as the object is approached
in suubsequent slabs, it appears brighter and closer. As another point, the field of view d; models the
presence of a view plane that stops all viewing short of the farthest visible plane d,, such as a billboard

or wall of a house: this is in keeping with the spirit of thin-slab viewing.

<——Depth of Vision (d,slices)
depth-weighted value= <—Field of View (d.si ces)—>
v()dyd)g, /
Image |
d= d=ds-1
A e
d=slice's depth =1 d=2 ..... d=ds-2 d=ds -eeeeees

from base €—Processing Window
Slab is built Stop slice data Slice depth
as seen from to DWmax of slab’s
base slice function here visual range

Fig. 4. The DWmax model. All image data values are weighted by the normalized distance between the base slice and
the data’s originating slice. Only the slices within the field of view d; are processed. Their distances from the base
b (slice where the slab is viewed from) range from d = 0 to d = d;_1. Theses slices are placed in a relative depth
perspective, as they are normalized by the number of slices defining the depth of vision. This depth d extends from
0 to dv—1~

Figure 5 gives the point-level algorithms for DWMax. Fast point processing determines the location
of the present depth-weighted maximum column value based on the previous point s,_i(x,y). The

intensity and weight of s;_;(x,y) are given in h;,. Two tests determine the location:

1. Is the present depth-weighted end value v(e) * w(e) (now entering the processing window) the
present maximum?
2. Is the previous depth-weighted base value v(a) * w(a) (now being discarded from the processing

window) the previous maximum?

A positive return from the first test identifies the depth-weighted present end as the present maximum

(i.e., the slab point to be returned). Otherwise, we proceed to the second test where a positive return



Function BruteDWmax(v, d;, dy)

h(0) = w(b)
h(1) = w(b)
for z = 2tod;

end

return (%Uh(l), h)

Function FastDWmax(v, ds, d,, h)
if (v(e) x (w(e) — 1)) > (h(O) * h(l))
h(0) = w(e)
w(e)
return ﬂg%ﬁ, h)
else if A(1) = w(b)
I‘eturn(BI‘uteDWmax(v, dy, dv))

else
h(l) = h(l) +1
return (%Uh(l), h)

Fig. 5. DWMax point functions. These functions act as BrutePoint and FastPoint generic slab algorithms of Figure
3. Function BruteDWmax brute forces the computation of point s(z,y). This function computes all points in
the first slab sg. BruteDWmax also comes into play for certain points on subsequent slabs. The field of view
ds and the depth of vision d, are input parameters. The column base value v(b) and its weight w(b) initiate the
search for the maximum depth-weighted column value. All values are weighted and compared. The maximum is
normalized and returned. The image point v(z) and corresponding weight w(z) that produce the DWMax value are
saved in the buffer array h,, as h(0) and h(1). This array assists fast processing of point (z,y) in the next slab.
Function Fast DWmax is for fast processing of DWmax point values. In most cases new slab points are computed
immediately. But if the previous slab maximum’s weight, as stored in h(1), is a base weight w(b), then previous
point information doesn’t help in computing the present point value. In these cases, brute-force computation is
required.

implies that brute-force processing of the total column is necessary. If both tests fail, the previous

point is deemed the present maximum after its weight has been adjusted.

The farthest visible plane, modeled by the depth of vision d,, proves to be the key to creating a
realistic depth perspective. The choice of d, can influence the visual appearance of a slab point in a
DWmax slab. Four details come to light when selecting d,. First, when d, = d;, end slice intensities
are overly decreased. The original end slice values do not retain a level of tissue information that has
meaning in the processing of the slab; thus, it is best to have d; < d,. Second, in our experience, the
range of values (1.5xds) < d, < (2*ds), produce the most effective visual differentiations of like tissues
located on diverging slices. Third, when d, > (2 * dy), depth perception suffers due to a diminished
differentiation on diverging slices. Fourth, a large d, > d, reduces slice differentiation to the degree

that depth becomes visually undetectable.

End-slice contributions resulting from DWmax processing without an extended range of vision (i.e.,
d, = ds) and contributions processed with a better d, are shown in Figure 6. A depth of vision that
does not extend beyond the field of view diminishes bone situated in the end slice to air. Thus, the
end slice does not contribute tissue information to the slab. However, processing with d, = (2*d) sets
bone to a value (soft tissue range) that will add to a slab’s depth perception. Therefore, the degree a
slice intensity value contributes to a slab is dependent on the choice of d,. An effective d, provides a

sufficient distance differentiation of like tissues to portray depth.



Slab Size | Vision vs. View | Calculation of DWmax value end slice bone value—sslab tissue value
_ (1047+1000)(7—6) _ .
7 d, =d, L04TH1000)(7=6)) _ 1000 = —708 | bone (1047)—sair (-708)
7 dy = (2% d,) W) — 1000 = 170 | bone (1047)—soft tissue (170)
1 dy = d, (%) — 1000 = —488 | bone (1047)—just above air (-488)
4 dy = (2  dy) (ﬁw“;lgoonﬂ) — 1000 = 279 | bone (1047)—sabove soft tissue (279)

Fig. 6. Depth-of-vision (dy) effects on DWMax end-slice contribution. The calculations consider standard 16-bit CT
HU intensity values, where air is -1000 HU and solid bone is 1047 HU [26]. Solid bone, which appears very bright
on a standard CT slice, is assumed to be in the end slice of a slab’s image data. The slabs are sized at d; = 7 (rows
1 and 2) and d; = 4 (rows 3 and 4). The calculation of the end-slice contribution, combining depth weighting (4)
and normalization (5), is shown in the third column. When the depth of vision does not add distance to the field of
view (dy, = ds), bone appears as air, as shown in the fourth column, and does not contribute any tissue definition
to the slab. In addition, all end-slice intensities appear as air when using d, = d;. Thus, the end slice becomes
essentially invisible. However, with d, = (2 x d;) the bone retains soft tissue values that add legitimate definition to
slab results when unobstructed.

C.2 Maximum and Minimum Point Functions

The well-known STS-MIP operation causes the suppression of low densities [19] and focuses on
bright structures. This section provides fast general-purpose algorithms for computing the STS-MIP
and the corresponding minimum operation. In mathematical form, the STS-MIP function determines

the maximum value within a column of image values v, ,:

s(z,y) = max (v(b), v(2), -+, v(ds — 1), v(e)) (6)

Figure 7 gives the straightforward STS-MIP point-level algorithms, BruteIMax and FastImax. Al-

gorithms for the minimum function are identical, except that a minimum value is returned.

Function BruteIMax(v, d;) Function FastIMax(v, d;, spre)
v(0) = v(b) ifv(e) > sppe
for 2 = 2tod, return{v(e)
if v(z) > v(0) else if v(a) = sy
v(0) = v(z) I‘eturn(BI‘uteIMax(v, ds))
end else return(s,,.)
end
I‘eturn(v(O))

Fig. 7. Point functions for STS-MIP. The brute-force maximum point function BruteIMax initializes its search for slab
point s;(z,y) at the base v, ,(b) of the incoming data column v, ,. The column size d; is received as an incoming
parameter. Upon searching the entire column, the maximum value is returned. The fast maximum point function
FastIMax brings in the previous maximum s;_1(#,y). The incoming column’s end v(e), the new addition to the
column, is returned if found to be the maximum. If the previous base v(a) was the maximum in the previous slab
si—1(z,y), then a complete column search for the maximum is required. Otherwise, the existing maximum becomes
the present maximum.

C.3 Extreme Gradient (EG) point functions

STS maximum-intensity and minimum-intensity slabs only contain information concentrated toward

one extreme end of the intensity range. Therefore, the resulting slabs have limited usefulness [7]. We
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propose the Fxtreme Gradient (EG) STS technique. The EG technique combines the maximum and
minimum values:

$(2,y) = Smaw(2,Y) = Smin(2,y)
where $ax(2,y) and spmim (2, y) are point-level outputs from the maximumand minimum STS functions,
per (6). The EG, reminiscent of the morphological gradient found in mathematical morphology [27],
provides information not shown by DWmax or other slab techniques. Figure 8, which draws upon the

basic max and min STS functions of Section I1-C.2, shows the point-level functions for EG.

Function BruteEG (v, d;) Function FastEG(v, ds, h)
h(0) = BruteIMax(v, d;) h(0) = FastIMax (v, ds, h(O))
h(1) = BruteIMin(v, d;) h(1) = FastIMin (v, d,, h 1))
I‘eturn({h(O) — h(1)}, h) return({h( ) — h(1)}, h)

Fig. 8. Point functions for the Extreme Gradient. Function BruteEG brings in a column of data v, , and its size
ds. Upon calculation of the difference between the brute maximum and minimum intensities the EG point s;(z, y)
is returned; see Figure 7. The extremes are placed in h,, for fast processing of s;,11(z,y). Function FastEG
subtracts the maximum and minimum intensities as returned from the fast extreme intensity point functions. The
stored values h; , are updated with the present point extremes and returned.

At a simple level, EG is a map of the maximum change of tissue density relative to depth. As the
results show, the EG STS function can detect and preserve significant small tissue changes, especially if
suitable intensity windowing is used. Changes within a slab are amplified by their repeated detection
and subsequent recording into contiguous EG slabs. This extended duration greatly aids with the
recognition of sudden or subtle changes. Further, EG does not employ a thresholding process during
processing. The EG method can highlight local borders between different tissue types. The changes

detected by EG can be particularly dramatic when viewing a sequence of slabs.

ITI. RESULTS

We use three high-resolution 3D CT scans of the chest (no contrast agents introduced) to illustrate
the proposed DWmax and EG STS methods. The results, which appear in Figures 9 through 15, show
the visual efficacy of the methods. Additional results with other images appear in [1,28].

Figure 9 shows how the previously proposed STS-MIP view gives no impression of depth or 3D
information. Also, much available local structural information is not visible. The corresponding
DWmax view, on the other hand, provides detailed 3D local structure, a strong impression of depth,
and endoluminal information. Note how the shaded carina near the center of the DWMax views
indicates the dark airway branchings into the left and right main bronchi. Further, the sequence of
DWMax views give considerable 3D information as the chest structures evolve. These views provide
depth perception, effectively show the physical structure of interior tissues, provide a clear visual

perspective into the cavity, and give insight into the external and internal structural relationships.
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Fig. 9. Comparison of standard STS-MIP and DWmax slabs. This case was generated with a Toshiba Aquillon helical
CT scanner. The image consists of 406 contiguous 512x 512 slices with thickness Az = 1.0mm, 0.5mm slice overlap,
and axial-plane resolution Az = Ay = 0.5mm. Top left: standard STS-MIP view sa43; ds = 40. Top right:
corresponding DWMax view ss43. Bottom views: further DWMax slabs, ss63 and ssps. All DWMax views use
dy =40 and d, = 60.

Figure 10 demonstrates how standard global projection techniques (all slices compiled to form one
coronal-oriented image) either obscure most structures (MIP) or show little detail (weighted sum).
Further, the coronal multiplanar reformatted slice gives no actual 3D information. The coronal se-
quence of STS-DWMax views, however, offer a dramatic dynamic view of the chest. Vessels, airways,
and soft tissues of the heart are apparent. Especially striking is how this sequence allows the observer
to perceive the airway tree’s endoluminal structure.

Figure 11 illustrates how the STS-DWMax technique gives clear views of the “budding trees” for

the airways and vessels. No other viewing technique would be able to provide such views of both the
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Weighted-Sum Projection

1

Max1mum Intensny PrOJectlon Multiplanar Reformatted Slice

=
e

e
DWmaX Slabs

Fig. 10. Standard projection viewing versus STS viewing in the coronal direction. Data of Figure 9 used. Top row: (left)
weighted-sum coronal projection image; (center) maximum-intensity projection image; (right) coronal multiplanar
reformatted view y = 284. Bottom two rows: four sequential DWmax views travelling through the chest from front

to back, 5934 (ds = 25, dv = 40), 59271 (ds = 20, dv = 35), 5984 (ds = 25, dv = 35), and 592905 (ds = 25, dv = 30)

global and local structure of such an interior. Figure 12 dramatically illustrates the greater detail

afforded by DWmax slabs over raw slice data. Notice the evolution of the airway and vessel trees in
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the slabs; also the shape and depth of some of the major airways are very apparent.

Fig. 11.  Multiplanar reformatted (MPR) viewing versus slab viewing for the sagittal direction. Marconi Mx8000
multidetector helical CT scan made of a healthy subject. The image consists of 165 contiguous 512x512 slices with
thickness Az = 1.0mm, and axial-plane resolution Az = Ay = 0.35mm. Varied sized slabs are used to increase
visible structural information. Top row: three sequential DWmax views traveling across the chest from left to right,
s138 (ds = 40, dy = 50), s170 (ds = 30, dy = 45), sa92 (ds = 20, d, = 30). Bottom row: corresponding raw sagittal
MPR slice data, which act as the base slices for the slabs above, #1138, 170, and z939.

Figures 14-15 illustrate the usefulness of the EG technique and how it can be used in conjunction
with DWMax. (Figure 13 shows samples of the original raw transverse-plane slice data used for
both Figures 14 and 15.) The raw EG slabs are useful for seeing any and all large local changes.
Again, viewing a slab sequence is particularly enlightening for seeing the evolution of the changes. By
intensity windowing the EG slabs, specific changes, corresponding to particular tissue transitions, can
be isolated. Consider the case of 3D CT chest imaging. Since the HU (intensity) ranges of various tissue
types is known, these can easily be focused on with windowed EG views. The middle row of Figure
14 illustrates how structural detail can be isolated. Note the concentric ring-like borders extracted for
the trachea and cancer. The encroaching cancer within the trachea becomes very apparent in the EG
views. By varying the slab size, as done in this figure, we can observe the extent of the cancer under
several different viewing conditions. Figure 14 also shows the impact of slab size variation on DWMax.

Figure 15 shows the intriguing possibility of merging STS-EG and STS-DWMax views. The DWMax
views show the 3D structure, while the EG views focus on the “interesting changes.” In the case of

Figure 15, the primary tracheal borders, concentric impinging-cancer borders, and esophagus are
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Fig. 12. Transverse slab viewing. Same data as Figure 11 used. Top row: three sequential DWmax views traveling
through the chest from top to bottom, sse (ds = 35, dy, = 50), s56 (ds = 35, d, = 50), and sgs (ds; = 30, d, = 40).

Bottom row: corresponding raw slice data, which act as the base slices for the slabs above, 235, 256, and zgs.

5382

CT slice 5 CT slice 11 CT slice 14

Fig. 13.  Original CT slices for a human lung-cancer case; these data are used for Figures 14 and 15. (For further
reference, this case was used in [18].) The original 3D image consist of 25 contiguous 512x512 slices with thickness
Az = 3.0mm and axial-plane resolution Az = Ay = 0.41mm.

displayed. In our experience, the EG technique can provide raw change information, tissue borders,
and evolving “change patterns.” Because the EG technique is a function of slice-intensity extremes,
changes remain consistent over a range of slabs and over a multitude of slab sizes. Viewing consecutive
slabs or various-sized slabs can help identify tissues, locate steady areas of growth (i.e., wall thickness),

and locate sudden or suspicious growth (i.e., airway obstructions).
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Dwmax: d,=7, d,=14, base=slice 5 Dwmax: d;=10, d,=20, base=slice 5

Flg. 14. Demonstration of EG and DWMax for the lung-cancer case of Figure 13. The slices of Figure 13 show the unprocessed base (v(b) = I(-,-,5)) and
ends (v(e) = I(-,-,11), v(e) = I(:,-, 14)) of the slabs shown in this Figure. Top row shows the raw EG slabs. Middle row shows the results of intensity
windowing the raw EG slabs (8-bit gray-scale assumed; width = width of intensity window; mid = middle gray-level value of window). Bottom row shows
corresponding DWMax STS views. By varying the slab size, the windowed STS-EG views show the evolving shape and size of the cancer impinging on the
trachea (note center contours in the windowed EG views, which show the tracheal border and cancer border). Also, the thicker-slab DWMax view (bottom
right) shows extra depth and visual extension of bronchi and vessels.

IV. COMPUTATIONAL EFFICIENCY

We performed complete operation counts for both the brute-force and corresponding fast versions

of each STS technique. To arrive at these results, we counted all operations, including additions,
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Fig. 15. Combination of STS-EG and STS-DWMax views. This figure combines the bottom two rows of Figure 14. For
emphasis, we manually edited the windowed EG views, before superimposing them on the DWMax views, to focus
on the EG borders for the trachea, impinging cancer, and esophagus.

subtractions, multiplications, divisions, logical operations, assignments, and memory retrievals, per
the algorithms of Figures 2, 3, 5, and 7-8. All operations were assumed to have the same cost. Tables
[ and IT summarize these results. More discussion appears below and complete details appear in [28].

The calculations assume x X y slices and a slab sequence S containing ¢ slabs. The fast STS procedure
requires a combination of brute-force processing and fast processing, as depicted in Figures 2-3. To

compute a particular slab s; in the sequence 5, two cases can occur:

1. WORST case — the slab s; requires brute-force processing. This happens when the sliding field
of view V; drops off a slice of data that forces a complete redefinition of the slab’s values from the
previous slab s;_;.

2. TYPICAL case — the slab s; can be computed with fast processing. This happens when the
present slab’s values are based on the same data existent in the previous slab’s field of view V;_;

or if the new slice appended to V; determines the slab’s values.

With a slab thickness d;, a reasonable assumption is that every d'* slab on the average requires WORST
case, or brute-force, computation in the fast procedure. Thus, the operation count for a particular
method to compute a sequence of ¢ slabs using slab thickness d; is given by

operation count = t(dsdi_l)(TYPICAL) + di(WORST) (7)

where TYPICAL and WORST are replaced by specific counts depending on the technique considered.
Table I gives the raw operation counts, based on this set-up. Column 2 assumes a complete brute-force
calculation. Column 3 gives the results for the fast procedure, based on the algorithms of Figures 2 and
3 and the assumption (7). The last column of Table I gives the limit of the ratio of pure brute-force

computation and fast processing, as the slab thickness gets large; as is apparent, the fast approach
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typically is much faster than pure brute-force calculation. Table II bears this conclusion out with

several specific values of d;. This table works in the necessity of always having to do some brute-force

processing. Clearly, as slab size increases, the amount of brute-force processing required decreases.

In all cases the fast methods decrease the computational burden by a factor greater than 2.3. For

all methods, the improvement over brute force computation increases almost linearly as the slab size

increases.

Techni Brute-F Fast P i 7 brute force brute force
echnique rute-Force ast Processing (uses eq. (7)) DL dsl—%oT
DWmax | fry(1+10d) | L5203 4 1ay) + £(3 4 2ey(T +3d,)) | 245 %
STS-MIP | toy(l+4d,) | 22024 3ay) + L(4 4 3ay(2+ d,)) | 24 1.

TABLE 1

OPERATION COUNT ANALYSIS FOR STS ALGORITHMS. A SLAB VOLUME MADE UP OF ¢ SLABS AND & X y VALUES

PER SLAB IS ASSUMED. THE ANALYSIS OF (7) IS USED TO ARRIVE AT THE FAST PROCESSING CALCULATIONS.

‘ Slab Technique ‘ DWmax ‘ EG ‘ STS-MIP ‘
Slab Size speed-up factor | % Brute time | factor | % Brute | factor | % Brute
d; =5 2.55 39.22 2.58 38.76 2.33 42.92
ds =7 3.55 28.17 3.42 29.24 3.22 31.06
ds; =19 9.55 10.47 8.47 11.81 8.56 11.68
ds =27 13.55 7.38 11.84 8.45 12.11 8.26
TABLE 11

COMPUTATION EFFICIENCY OF FAST STS ALGORITHMS FOR 512 x 512 SLICES AND VARIOUS d,. ALONG WITH EACH
SPEED-UP FACTOR (FIRST COLUMN FOR EACH TECHNIQUE), A PERCENTAGE OF BRUTE-FORCE PROCESSING TIME

REQUIRED TO PROCESS THE FAST ALGORITHM HAS BEEN GIVEN (SECOND COLUMN FOR EACH TECHNIQUE).

A. Dynamic Viewing of Slabs

V. DISCUSSION

Remy-Jardin et al. evaluated the clinical value of STS-MIP for CT scans and found “...sliding-thin-

slab MIPs enabled a more precise characterization of the distribution of lung changes than did 1-mm-

thick conventional CT scans” [6]. We believe this to be true to a great extent for both the DWmax

and EG. The information provided by DWmax and EG can be comprehended most effectively when

a consecutive sequence of slabs are viewed dynamically. Utilizing the mind’s quick response to visual
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input, a viewer’s immediate attention is drawn to changes in slab content that occur from slab to slab.
The more striking and abnormal, the more a change will “jump out” like a beacon. Thus, dynamic

viewing leads to a quick and effective recognition of the specific locations that need closer scrutiny.

B. Slab Size

Slab size d; is an important parameter for the observation of structures within a slab volume. A
clinical study on the ability of STS-MIP to detect mild micronodular patterns led to the conclusion
that slabs thinner than micronodular patterns are insufficient [6]. Our experience with the EG and
DWMax methods leads us to a similar belief. We found a small structure is best detected if it provides
one of the intensity extremes that define the EG value. This is most likely to occur when the slab
is no bigger than what is necessary to enclose the structure, because the structure then can not be
obstructed by the presence of additional structures in the data. For a larger structure, where the slab
encloses only a part of the structure, the tissue is shown as an outlined area of constant value (see
Figure 14). EG slab-size variations affect the width of the evolution patterns, not its EG value.

The question of slab size d; is less vital for the DWmax method. DWmax allows a large range of
structures (values) to impact the slab, because DWmax’s depth weighting removes the effect of blind
maximum decisions (the basis for STS-MIP slabs). A small structure’s impact is partly decided by its
location in the slab, since its distance from the base slice determines the degree its intensity will be
scaled. Most importantly, a small structure has its strongest impact when it is near or passes through
the base slice of a slab. Thus, small structures can “come into view” as one dynamically observes a
slab sequence. The additional information shown by DWmax is striking when compared to STS-MIP
results (see Figure 9). For larger structures such as airways, DWmax provides the best view of interior

details when the structure is only partially contained in the slab, as in Figures 9-11 and Figure 14.

C. Meeting the Shortcomings of Present Volumetric C'T Techniques

Naidich et al. [7] pointed out the limitations of current volumetric CT processing techniques. The
DWmax and EG methods do not use these techniques. Specifically, intensity thresholding (i.e., voxel-
value dependent processing) is not needed for 1) thin-slice parallel processing along standard axes, 2)
slice-level weighting that creates DWmax slabs, or 3) the determination of EG extremes. Both DWmax
and EG incorporate the entire intensity range of the incoming data. Neither intensity windowing nor
thresholding is used. DWmax and EG do not use partial-volume processing, which bring in noise
and certain artifacts into standard 3D reconstruction. Furthermore, the DWmax and EG techniques
produce true image interfaces versus the production of voxel boundaries and blending artifacts that
are characteristic of 3D reconstruction [7]. In addition, the DWmax and EG methods require very

few parameters. Therefore, our proposed methods are far less a function of user decisions than other



19
techniques.

D. Final Comments

DWmax weighting decisions are determined by window slice locations only. Therefore, a single set of
column weights apply to all columns, without regard to column location in the processing window or
window location in the image. The EG method extends slab information two ways. First, structural
details and changes, not found in DWmax results, are captured by the EG “evolution map” (in one
slab or in a set of consecutive slabs). Second, the EG method produces structural edges.

To date, our testing has focused on 3D CT pulmonary images. Further work is needed in developing
protocols for specific medical diagnostic procedures. Our present experience shows that the DWmax
and EG methods have great promise in filling the emerging need of assessing very large 3D volumes, as
produced by new multi-detector helical CT scanners. DWmax slab views are strongly reminiscent of
standard 2D CT slices. Hence, the interpretation of DWmax slabs requires a minimal learning curve
and allow past experience to be of direct benefit. The fast algorithms proposed for DWmax, EG, and
the standard STS-MIP rapidly produce slab sequences on a general-purpose computer. This makes
the real-time analysis of a given 3D volume image feasible, as we are doing in a system for virtual

bronchoscopy [24].
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