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Abstract

Virtual bronchoscopy (VB) has emerged as a paradigm for more effective 3D CT image evaluation. Systematic evaluation of a 3D CT

chest image using VB techniques, however, requires precomputed guidance data. This guidance data takes the form of central axes, or

centerlines, through the major airways. We propose an axes-generation algorithm for VB assessment of 3D CT chest images. For a typical

high-resolution 3D CT chest image, the algorithm produces a series of airway-tree axes, corresponding airway cross-sectional area measure-

ments, and a segmented airway tree in a few minutes on a standard PC. Results for phantom and human airway-obstruction cases demonstrate

the ef®cacy of the algorithm. Also, the algorithm is demonstrated in the context of VB-based 3D CT assessment. q 2001 Elsevier Science

Ltd. All rights reserved.
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1. Introduction

Major airway obstruction is a common problem arising

from lung cancer, benign processes, and other tumors that

commonly metastasize the airways. Impending obstruction

to the trachea is life threatening, while obstruction to the left

or right main bronchi are associated with signi®cant

morbidity. These patients need adequate evaluation prior

to an intervention such as laser resection, balloon broncho-

plasty, stent insertion, cryotherapy or brachytherapy. Three-

dimensional (3D) computed-tomography (CT) pulmonary

images are commonly used for such evaluation [1]. The

evaluation of these images is generally done manually

with ®lm records [2]. A ®lm record shows a series of trans-

verse-oriented two-dimensional (2D) slice images. The

physician performs 3D mental reconstruction of anatomical

structures depicted in the ®lm to evaluate the case. While

often suitable for the radiologist, this form of evaluation is

typically inadequate for the bronchoscopist or surgeon, who

need precise 3D `road maps' to the surgical sites of interest

[3].

Recently, virtual bronchoscopy (VB) has emerged as a

paradigm for more effective 3D CT image evaluation

[4±12]. VB is a sub-branch of the new ®eld often referred

to as virtual endoscopy [13,14]. When related to the chest,

virtual endoscopy involves the use of computer-based

image-processing and graphical techniques to observe

structures inside the `virtual chest environment', as de®ned

by a 3D CT pulmonary image. Since all evaluation is

computer-based, the user can navigate through the 3D

chest environment with great ¯exibility.

3D CT images used in tandem with VB techniques can

help the physician evaluate patients suffering from major

airway obstruction. Systematic evaluation of a 3D CT

chest image using VB techniques, however, requires

precomputed guidance data [8]. This guidance data

generally takes the form of central axes, or centerlines,

through the major airways. Such axes not only give a

means for evaluating a 3D CT chest image, but also poten-

tially provide road maps for subsequent bronchoscopic

procedures (the bronchoscope passes through the airways!).

We propose a semi-automatic axes-generation algorithm

for VB assessment of 3D CT chest images. The proposed

algorithm can generate a series of airway-tree axes for a

typical high-resolution 3D CT chest scan in a few minutes

on a standard PC. It is integrated into a PC-based system for

VB CT assessment and follow-on bronchoscopic guidance
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[15,16]. The results, given for phantom and human cases,

demonstrate the ef®cacy of the algorithm. The human

results focus on the problem of assessing major airway

obstructions.

Section 2 introduces the problem of axes generation for

3D CT chest images. Section 3 describes the proposed axes-

generation method. Section 4 provides a large series of

results employing phantom and human data. Finally,

Section 5 offers concluding remarks.

2. Problem overview

Mathematical notation and problem constraints are

de®ned within the context of ®nding the central axes of

the major airways depicted in a 3D CT pulmonary image

V. We assume that V consists of a contiguous series of 16-bit

slices spaced Dz apart. The transverse-plane sample

spacings are Dx and Dy. A voxel is denoted by �x; y; z� and

voxel �x; y; z�'s intensity value is given by V�x; y; z�: The

airway tree consists of a complex, branching, connected

set of dark airways surrounded by relatively bright airway

walls. Limited spatial resolution, noise, partial volume

effects, and image-reconstruction artifacts complicate the

extraction of the airway-tree axial structure.

We assume that an algorithm devised for extracting the

major airways and associated axes (also called paths) abides

by the following requirements: (a) paths evolve slowly

along their extent, thereby providing a smooth trajectory

for navigation; (b) paths for a `complete' tree are generated

(i.e. smooth paths through multiple airways are generated in

one pass); (c) the extracted airways conform to the measur-

able morphology and gray-scale characteristics of a typical

3D CT pulmonary image; (d) the algorithm preserves the

homotopy of the original structure; (e) paths approximate

the medial (central) axes of the branches in the structure; (f)

airway cross-sections change little from one point along a

path to the next.

Previously proposed axes-generation techniques have

employed either manual image interaction or automatic

processing. Manual approaches have a user either fully

trace a path, do signi®cant manual segmentation, or specify

a priori sites (key frames) that are later interpolated into a

complete path [4,13,17]. Unfortunately, a 3D image's

complexity and dimensionality make such procedures

prohibitive for practical use, especially for images

generated by new multidetector helical CT scanners [18].

Automated approaches have employed: (1) segmentation

followed by 3D skeletonization [8,12,19±23]; (2) morpho-

logical operations [24±26]; (3) active contour modeling

[27]; (4) tubular structure analysis, using differential geome-

try [23,28±33]. These techniques either lead to imprecise or

missing axes (particularly when pathologies and noise may

be present), require inordinate processing time, or are not

well-suited to our speci®c problem of de®ning precise

smooth central axes suitable for navigation through a

complex branching-tree structure. For example, many tech-

niques only give one path [21,22,27,29,31]. Many techni-

ques do not give smooth navigation axes, but instead give

coarser digitized axes [8,19,20,23±25,32]. A few proposed

techniques for tracking vessels in coronary angiograms

considered a problem similar to ours [26,28]. These meth-

ods used tree continuity assumptions and an adaptive track-

ing ®lter matched to the expected gray level pro®le of a

vessel cross-section. These methods, while limited to 2D

projection images of 3D structures, motivate our algorithm

for true 3D airway analysis.

Our algorithm follows a two-stage approach. The ®rst

stage computes a Discrete Model that consists of a sparsely

spaced set of data corresponding to the major airway axes.

The second stage then uses the Discrete Model to de®ne a

smooth set of airway axes, a segmented airway tree, and

other measurement data; these data constitute the General-

ized Cylinder (GC) Model [34±37]. Fig. 1 schematically

illustrates these two model components.

The basic ¯ow of the two-stage algorithm is as follows.

The user ®rst speci®es a starting point of interest for the

airway tree, generally in the proximal end of the trachea.

Then, to perform the Stage-1 calculation of the Discrete

Model, an adaptive 3D searching technique steps through
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Fig. 1. Models used in the two-satge axes-generation algorithum. Left: example of a Discrete Model for a tree made up of eight viewing sites wl,l� 0,2,¼,7;

Right: example of a Generalized-Cylinder (GC) Model for a single path, where sn(t,u) is the GC surface function speci®ed by spine (central axis) pn(u) and

contour function cn(t,u). See Section 3 for more.
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the 3D image, building up a sparsely sampled set of central

axes for the major airways. Stage-2 then applies a

cubic-spline analysis and contour-®nding procedure to the

Discrete Model data to give a generalized cylinder

representation for each airway central axis; this gives the

GC Model. Section 3 gives a complete description of the

two-stage algorithm and the model components.

3. Axes-de®nition algorithm

Section 3.1 de®nes many of the analytical quantities

constituting the Discrete Model and GC Model. Section

3.2 summarizes the two-stage algorithm. Finally, Section

3.3 and Section 3.4 gives further details on key algorithm

steps.

3.1. Two-stage model de®nition

The Discrete Model consists of a sparse set of viewing-

site, branch, and path data de®ning the central axes of the

major airways. An individual point along an axis will be

referred to as a viewing site. A set of contiguous viewing

sites between an axis end point and branch point or between

two branch points will be called a branch. A branch point is

a viewing site where a single branch divides into two or

more separate branches. One complete axis, or path,

consists of a subset of connected branches, where the ®rst

and last path branches terminate the path with endpoints.

More speci®cally, the Discrete Model consists of L viewing

sites

wl; l � 0; 1;¼;L 2 1: �1�
M branches

bm � {wm;0;wm;1;¼;wm;ENDm
}; m � 0; 1;¼;M 2 1

�2�
and N paths

pn � {b0;bn;1;¼; bn;ENDn
}; n � 0; 1;¼;N 2 1; �3�

where L $ 2, M $ 1, and N $ 1 (Technically, a tree can

consist of only one branch and one path; i.e. M � N � 1:

In this case, a branch can be terminated by two end points.).

Each viewing site wl belongs to only one branch unless it is

a branch point. The special viewing site w0, referred to as

the root site, is picked manually, as discussed in Section 3.3.

The root site w0 starts the tree. Hence, it always starts the

®rst branch b0 and ®rst path p0. Per the de®nition (2), each

branch bm consists of a set of contiguous viewing sites from

set (1). For the 3D chest problem, we assume that branch b0

corresponds to the trachea and terminates at the main carina.

Branch b0 is a member of all paths. Per (3), a subset of

connected branches starting from b0 and terminating at a

branch bn,ENDn
that has an endpoint form a path pn, where

the constituent branches are from branch set (2). In general,

branches bm can belong to many paths.

For Discrete Model shown in Fig. 1, the complete tree is

represented as

b0 � {w0;w1;w2}; b1 � {w2;w3};

b2 � {w2;w4;w7}; b3 � {w3;w5};

b4 � {w3;w6}; p0 � {b0;b1; b3};

p1 � {b0;b1;b4}; p2 � {b0;b2}:

The two viewing sites w2 and w3 are branch points.

A viewing site is more completely expressed as wl �
{sl;dl}; where

sl � � xl yl zl �; d
l
� � dx

l d
y
l dz

l �: �4�

sl is the 3D location of wl; dl is a 3D unit vector pointing in

the viewing direction for wl�idli � 1�; xl, yl and zl are the x,

y, and z components of sl; and dx
l ; d

y
l ; and dz

l are the respec-

tive x, y, and z components of dl. At each viewing site wl, the

viewing direction dl de®nes a local coordinate frame such

that the local z-axis is aligned with the axis of the tree at sl.

As we will clarify in Section 3.3, adjacent contiguous view-

ing sites are not necessarily equally spaced.

The Discrete Model captures essential top-level topo-

logical structure of the airway tree in an ef®cient data

structure. To limit redundancy, viewing sites are shared

among branches and branches are shared among paths.

But the Discrete Model does not contain detailed smooth

paths and tree structure. For VB-based navigation through

a 3D image, smooth paths are necessary. To meet this

requirement, we propose the Generalized Cylinder Model,

which builds upon the concept of a generalized cylinder

(GC) [34±37].

A generalized cylinder is a generalization of a right

cylinder. The axis of a GC is not con®ned to be a

straight line. Instead, it can be an arbitrary open curved

trajectory. Also, instead of a circular 2D cross-section,

the cross-section of a GC can be an arbitrary closed

contour subject to certain continuity constraints. GCs

are particularly attractive, since their compact represent-

ation permit ef®cient computer implementation. The GC

Model contains detailed structural information for each

path. Each Discrete-Model path pn is transformed into a

GC that is composed of a spine (or primary axis) pn(u)

and a contour function cn(t,u). With the spine and

contour functions, the surface sn(t,u) of the GC can be

obtained. Fig. 1 depicts an example GC. Cubic

B-splines are used to represent the spine and contour

functions. For VB navigation, a spine corresponds to

a desired smooth navigation path through an airway

and the contour function de®nes the airway wall's

endoluminal surface about the spine.

Complete details on the B-spline functions representing

the spines and contour functions are given in Section 3.4 and

Ref. [38]. Below, we summarize the quantities de®ning

these functions. The spine pn(u) is a continuous, open,
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parameterized curve in R3 given by

pn�u� � � xn�u� yn�u� zn�u� �; 0 # u # umax
n ;

n � 0; 1;¼;N 2 1;
�5�

where u is a distance parameter as one moves along the path

from beginning to end, and xn(u), yn(u), and zn(u) are

B-spline functionals that determine x, y, and z position in

3D image space. Note that each point of the spine (5) also

has a direction vector associated with it

dn�u� � � dx
n�u� dy

n�u� dz
n�u� �; �6�

as in the case of the Discrete Model. The direction dn(u) is

not necessary for de®ning the spine per se, but it is necessary

for virtual-endoscopic navigation and exploration as done

for the examples of Section 4.3. As Section 3.3 describes,

the viewing sites comprising Discrete-Model path pn serve

as interpolation points, or knot points, for the B-spline pn(u).

The B-spline representation for the spine permits equis-

paced sampling (per u or arc length) along the path. At

each point u along the spine pn(u), the tangent to the

spine, dpn�u�=du; de®nes the z-axis of a local coordinate

frame. In this local coordinate frame, the contour function

cn�t; u� � � xc
n�t; u� yc

n�t; u� 0 �; 0 # t # 1 �7�
represents the generalized cylinder's orthogonal cross-

section, where t is the distance parameter as one moves

along the closed contour from beginning to end, u is the

position along the nth GC spine pn(u), and xc
n�t; u� and

yc
n�t; u� are the B-spline functionals that determine the x

and y position in the 2D plane with respect to the distance

parameter t. The contour function is a closed, parameterized

B-Spline curve in the local coordinate frame constrained to

the 2D plane orthogonal to the path tangent at u. Hence, the

z component of cn�t; u� � 0: Finally, a point on the surface

of the nth GC is given by

sn�t; u� � pn�u�1 cn�t; u�Rn�u�; �8�
where Rn(u) is a 3 £ 3 rotation matrix that rotates the global

3D image z-axis to the z-axis of the GC's local coordinate

frame at point pn(u); i.e. this rotation is given by the

relationship between the global z-axis and dpn�u�=du:

3.2. Two-stage algorithm summary

The two-stage algorithm is summarized below. Complete

details on the steps below are discussed fully in Sections 3.3

and 3.4 to follow.

Stage 1: discrete-model calculation

1. Starting with a given 3D 16-bit chest image V, the user

speci®es the root site w0 � {s0;d0}; somewhere near the

proximal end of the trachea.

2. Use w0 to begin a queue of pending viewing sites. Start

branch b0 with w0, and start path p0 with branch b0.

3. Pick a viewing site wl from the queue.

4. Perform a local 2D oblique-slice analysis at wl to

estimate the airway structure's cross-section. If the

analysis passes a set of stopping criteria, then wl

corresponds to an endpoint; this terminates the current

branch and path-go to step 6. Otherwise, use the centroid

of the extracted cross-section as the re®ned viewing-site

location sl for wl.

5. Perform a 3D spherical search about the re®ned viewing

site wl to locate new viewing sites to analyze. If new

viewing sites are found, then add them to the queue.

6. If either the cross-sectional analysis or spherical search

reveals that wl corresponds to an endpoint or branch

point, then appropriately update the active branch and

path information.

7. If the queue is not empty, return to step 3. Otherwise, the

recorded viewing site, branch, and path information

de®nes the ®nal Discrete Model, per (1±3).

Stage 2: generalized-cylinder model calculation

1. For each path pn in the Discrete Model data, n �
0; 1;¼;N 2 1; compute the spine and contour functions

of the associated generalized cylinder:

(a) Perform a B-spline analysis to compute the spine

pn(u).

(b) At equally spaced samples û � 0; u1; u2;¼; umax
n ;

along the spine, compute the contour function cn�t; û�
using a B-spline analysis. Also, compute the GC's

cross-sectional area at û:

2. Construct a segmented airway-tree image by merging the

surface functions (8) for all GCs in the GC Model. Also,

compute endoluminal cross-sectional area measurements

of the tree.

The ®nal outputs are the smooth paths pn�u�; n �
0; 1;¼;N 2 1; cross-sectional area measurements of the

airway tree along the paths, the basic viewing-site/branch/

path connectivity relationships per (1±3), and the segmen-

ted airway tree.

3.3. Stage-1 details

This section gives complete detail for the Stage-1

Discrete Model calculation. The step numbers below refer

to the steps outlined in Section 3.2.

Step 1: specify root site

The root site w0 is speci®ed manually by examining the

3D image data in an appropriate image viewer. We have

used virtual-endoscopy systems built by our group for PCs

and Sun workstations for this purpose [8,15]. This site is

easily picked by locating any point near the proximal end

(`top') of the trachea. This point need not be precisely

located in the center of a tracheal cross-section, since the

two-stage algorithm `straightens out' the trajectory of travel.

Step 4: 2D oblique-slice analysis

First, a 2D slice of data that is centered about sl and

orthogonal to dl is sampled from the given 3D image V.

This is depicted in Fig. 2. Next, a set of equally spaced
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rays perpendicular to dl are cast radially outward from sl on

this slice. Points encountered by a ray are computed by

using 3D nearest-neighbor interpolation on the original 3D

image. In our results, we cast 16 rays. If a ray strikes an

image point at distance rb having image value f �rb� that is

greater than a prescribed threshold, then this marks a point

on the airway lumen's boundary; see Fig. 3. The complete

set of boundary contour points provide an initial estimate of

the airway lumen's boundary at viewing site wl. In a typical

CT chest image `air' values are near 21000 HU versus

ap; 1 100 HU (or greater) for an airway wall. Hence,

picking a threshold tends to be straightforward. We have

also used a gradient-based technique and a local half-

maximum approach to ®nd where a ray strikes the airway

lumen, but have not observed these methods to offer

appreciable differences in the path calculation [17,38].
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Fig. 3. Contour boundary ®nding. Rays are cast out from sl on the oblique slice. When a ray strikes a point rb that has a gray-level value f(rb) above a preset

threshold, then this point speci®es a endoluminal boundary point. For 3D CT data, the air appears black (near -1000 HU) and the brighter wall is generally

above 100 HU. (a) 2D oblique cross section sampled at sl. (b) Gray-scale image pro®le f(r) along a ray.

Fig. 2. 2D oblique slice sampled from V about viewing site wl. Local coordinate frame (x 0, y 0, z 0) of the slice is de®ned by location sl and direction vector dl.

Direction vector dl is aligned with the airway axis and the z axis (z 0) of the local coordinate frame. The left side of the ®gure shows the 3D image's global (x, y, z)

coordinate frame.
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viewing site is an endpoint: if the computed airway contour

(a) has a radius below a prescribed minimum or (b) has a

shape that is too far from circular (measured by computing

the standard deviation of the ray lengths). We set the

minimum radius to be 1/2 the coarsest spatial resolution

dimension (usually the slice thickness Dz). We vary the

standard deviation parameter depending on the operating

conditions. The standard-deviation stopping criteria detects

situations where a contour has a sudden break in it and leaks

into the parenchyma; this happens when the airway wall

becomes very thin or the airway becomes very small. If

the viewing site wl passes either of these stopping criteria,

it is deemed to be an endpointÐthis terminates the currently

active branch and path. Otherwise, the airway is suf®ciently

large and has a suitable shape. Thus, the analysis of this

viewing site continues onto step 5. The centroid of the

contour is used as a modi®ed estimate of the viewing site's

location sl Also, the minimum radius rl of a circle that fully

encloses the contour is calculated.

Step 5: 3D spherical operator search

The goal of this step is to perform a 3D search for airways

emanating from the currently active viewing site. This is

done by ®nding where air patches, which correspond to

evolving airways, intersect the surface of an appropriately

constructed tessellated 3D sphere situated about sl. The

intersecting spherical air patches indicate new regions to

move to and help de®ne new viewing sites to examine.

The discussion below describes the construction and use

of the sphere.

The modi®ed viewing-site location sl and minimum

radius rl from step 4 are used to de®ne a 3D tessellated

spherical search operator Sl. The radius of this sphere is

given by Rs � rl 1 dr; where dr . 0 is the minimum

detectable airway wall thickness. We choose dr so that

it equals the minimum spatial resolution of the image

(typically Dx or Dy). By its construction, the spherical

operator Sl will be just large enough to completely contain

the cross-sectional contour at wl. At the same time, the

sphere is small enough so that all airway branches emanat-

ing from wl can be detected. The resulting sphere is shown

by the dashed lines in Fig. 4a. Note that the sphere is

constructed to cover approximately a spherical volume in

space. This gives isotropic search coverage to all directions.

But the actual sampled form of the sphere is typically an

ellipsoid, since the slice thickness Dz tends to be larger than

the transverse-plane sample spacings, Dx and Dy.

In order to approximate a spherical shell, we use a

tessellated spheroid generation technique developed by

Paeth [39]. This results in a unit spheroid consisting of a

list of vertices and normal vectors that form small triangles

to approximate the surface of a sphere. Fig. 5a depicts the

top view of a spheroid of depth 3 with vertices numbered

counterclockwise out from the center. The depth corre-

sponds to the factor of angular division within one octant

of the sphere. The radius of the spheroid can be adjusted by

scaling the vertex locations. Paeth gives complete detail on

this structure [39, p. 179±90].

All airway branches emanating from the volume covered

by the spherical operator Sl will form closed `air' patches Cs

at the intersections of airway walls and the sphere's surface.

See Fig. 5b. Detecting airway branches, and hence new

viewing sites to search, then amounts to ®nding all

connected spherical surface patches that intersect air regions

Cs. If the 3D image point situated at a sphere vertex P1 is

below the acceptable threshold for air (as used for the 2D

oblique-slice analysis), then this vertex is deemed to be

contained by air patch Cs. All connected sphere vertices

intersecting Cs are deemed to constitute Cs. Rather than

the traditional notions of 4- and 6-connectedness of a 2D

pixel set, we perform connected-component analysis on the

surface of a sphere. For our implemented case of a tessel-

lated approximation to a sphere, we treat the vertices as a

grid of points and the line segments connecting them (face
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Fig. 4. Construction of the 3D tessellated spherical operator Sl about the current viewing site wl. As described in the text, ªairº regions (contours Cs) passing
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operator. (b) Side view of 3D search about wl11 A new viewing site is found. (c) 2D side view of evolving tree using a series of spheres.
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edges) as the connectivity paths. See Fig. 5c; vertices P1, P2,

P4, and P3 are found to be a connected cluster of sphere

vertices passing through Cs. At least three connected

vertices must be found to justify a valid cluster. Given the

centroid cs of a cluster, cs speci®es the location of a new

viewing site to search and the vector (wl 2 cs) speci®es this

new site's direction. Note, that neither a viewing site's loca-

tion sl or direction dl is con®ned to integer coordinates.

The search is actually done over a hemisphere of

directions situated about sl even though the entire

tessellated sphere can be necessary for constructing the

surface patches, with the orientation of the hemisphere

determined by the current direction dl. The spherical

operator's `snug' construction about wl guarantees that

all evolving airway branches are detected by the operator.

A new viewing site wl11 is always situated at a distance Rs

from wl, as depicted in Fig. 4b; i.e. the search moves

forward as far as possible and connected sites are not

necessarily equidistant. Fig. 4c illustrates a 2D side view

of how the 3D spherical search evolves during the Discrete

Model's construction.

The sphere's depth is updated for each examined

viewing site and is determined as follows. First, we

assume that the smallest airway endoluminal structure

that can be detected must have a radius rmin of at least

1/2 the slice thickness Dz. Since Dz is generally greater

than the in-plane resolutions, Dx and Dy, the worst case

is for a horizontally oriented airway in the x±y plane of

the scanned image that is visible on only a single slice.

We de®ne h as the distance from the sphere center to

the midpoint of a chord connecting two neighboring

vertices and e as the maximal deviation of the chord

from a true sphere of radius Rs (Fig. 6a). Note that

triangle facets tessellating the sphere vary in shape

slightly across the sphere's surface. The worst case is

when a given facet is an equilateral triangle with sides

of length b (the maximal chord length) and when all

three of its vertices are precisely on the inner wall of an

airway's cross-section. If the position of the triangle is

translated at all or any of the triangle's sides are shor-

tened, then one or more vertices must fall outside the

airway's interior and hence result in a missed detection.

The sphere's depth must be large enough to prevent this

occurrence. Fig. 6b depicts this situation. Combining the
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relationships between b, rmin, and spheroid radius Rs

gives the required depth [38]:

Sphere depth � p

4
sin21

rmin�11sin p
6 �

2Rs cos p
6

 ! !21

: �9�

This spheroid will then be guaranteed to have a tessel-

lated surface with a ®ne enough resolution to detect any

subsequent branching airway points subject to the mini-

mum allowable size.

Step 6: update branch and path relationships

At the end of the analyses of Steps 4 and 5, the Discrete

Model requires updating. This requires some straightfor-

ward book-keeping, brie¯y highlighted below. Three cases

arise as a result of the current viewing site's analysis:

² If the current viewing site passes the stopping criteria

(step 4) or if the spherical search ®nds no subsequent

viewing sites, then wl is an endpoint: terminate the

current branch and path.

² If one new viewing site is found, append it to the current

branch.

² If two (or more) viewing sites are found, then wl

corresponds to a branch point. Terminate the current

branch and generate new branches for each new

viewing site. The ®rst viewing site of each new

branch is the current viewing site wl, and the second

viewing site is the respective newly found viewing

site. The connectivity between the current branch and

the new branches is recorded in the Discrete Model.

Also, the currently active path is continued along one

of the new branches, while a new path is initiated

using the other new viewing site.

3.4. Stage-2 Details

This section gives more detail for the two steps of

Stage 2. A generalized cylinder is computed for each

Discrete-Model path pn. As stated earlier, the GC

requires a spine function pn(u) and a contour function

cn(t,u). Both of these quantities are computed using

well-known cubic uniform B-splines [40]. Our GC-

Model development adapts the efforts of Shani et al.

to our 3D tree problem [35].

Step 1(a): spine calculation

The spine pn(u) of the nth GC is derived from pn and is

represented as an open cubic uniform B-spline function. The

basic steps of this calculation are as follows: (a) the viewing

sites wl along pn serve as knot points sl; (b) the knot points sl

are used to compute control points Vl; (c) the path's B-spline

representation pn(u) is made up of a set of piecewise

connected span functions Ci(u), which are a function of

the control points Vl. All essential detail for these calcula-

tions appears below.

Consider a Discrete-Model path pn made up of P

viewing sites

pn � {w0 w1 w2 w3 w4 w5 w6 w7 ¼ wP22 wP21}:: �10�

The viewing-site locations of the path, written as a P

element vector

S � {s0 s1 s2 s3 s4 s5 s6 s7 ¼ sP22 sP21}: �11�

serve as knot points or interpolation points for the spine

pn(u) (We drop the subscript n for much of this discus-

sion to simplify notation.). The spine pn(u) is guaran-

teed to pass through these points in 3D space. A set of

P 1 2 control points Vi; i � 0; 1;¼;P 1 1; are derived

from the P knot points, where each Vi is a point in 3D

space. Each consecutive group of four control points

�Vi � �Vi21 Vi Vi11 Vi12�T; i � 1; 2;¼;P 2 1 �12�

are used to form a series of P 2 1 third-order continu-

ous span polynomials Ci(u), where

Ci�u� � � u3 u2 u 1 ��C� �Vi �13�

and the 4 £ 4 matrix C is given by

C � 1

6

21 3 23 1

3 26 3 0

23 0 3 0

1 4 1 0

26666664

37777775: �14�

So, for 0 # u , 1

pn�u� � Ci�u 0�; �15�

where

i � int{u�P 2 1�} 1 1; i � 1; 2;¼;P 2 1 �16�

and

u 0 � �u�P 2 1��2 i 1 1; �17�

where int(a) represents the integer part of a.

The only detail remaining is the computation of the

control points. The knot points are related to the control

points through the following matrix relationship:

S � DV; �18�

where V is a P-element subset of the control points given by

the vector

V � �V1 V2 V3 V4 V5 ¼ VP �T;

and, for third-order B-splines, the P £ P matrix D is given

by the well-known relation
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D � 1

6

6 0 0 0 ¼ 0

1 4 1 0 0

0 1 4 1 0

0 0 1 4 0

..

.
] ..

.

1 4 1

0 0 0 0 ¼ 0 0 6

266666666666666664

377777777777777775
� 1

6

a1;1 a1;2 0 0 ¼ 0

a2;1 a2;2 a2;3 0 0

0 a3;2 a3;3 a3;4 0

0 0 a4;3 a4;4 0

..

.
] ..

.

aP21;P22 aP21;P21 aP21;P

0 0 0 0 ¼ 0 0 aP;P

2666666666666666664

3777777777777777775
: �19�

(The terminating control points V0 and VP11 are discussed

below) D can undergo L±U decomposition:

D � LU:

Since D is tridiagonal, both the lower triangular matrix L
and the upper triangular matrix U are bidiagonal:

L � 1

6

1 0 0 0 ¼ 0

l1 1 0 0 0

0 l2 1 0 0

0 0 l3 1 0

..

.
] ..

.

lP22 1 0

0 0 0 0 ¼ 0 lP21 1

2666666666666666664

3777777777777777775
;

U �

u1 w1 0 0 ¼ 0

0 u2 w2 0 0

0 0 u3 w3 0

0 0 0 u4 0

..

.
] ..

.

0 uP21 wP21

0 0 0 0 ¼ 0 0 uP

2666666666666666664

3777777777777777775
:

�20�

The sparse forms of the matrices above permit ef®cient

calculation of the control points via the following simple

recurrence relations. Let

y1 � s0: �21�
From Eqs. (19) and (20),

u1 � a1;1 �22�
and, for i � 2;¼;P;

yi 2 si21 2 li21yi21; �23�
where

li21 � ui21

ai;i21

; �24�

ui � ai;i 2 li21wi21; �25�

wi � ai;i11: �26�
Given the values of yi, wi, and ui, i � 1; 2;¼;P; we can now

get the control points:

VP � yP

uP

; �27�

Vi � yi 2 wiVi11

ui

; i � P 2 1;¼; 1: �28�

Finally, the terminating control points are given by the

following and guarantee that the local curvature of the

spine equals 0 at its ends:

V0 � 2V1 2 V2; VP11 � 2VP 2 VP21: �29�
Thus, overall, to compute pn(u), the following procedure is

followed: (a) use Eqs. (10) and (11) to set up the knot points;

(b) use the starting condition (21) and relations (19), (20)

and (22)±(26) to compute the intermediate quantities yi, ui,

and wi, and Eqs. (27)±(29) to get the control points; (c)

apply Eqs. (13)±(17). Finally, we point out that direction

vectors dn(u), Eq. (6), can be computed for each spine pn(u),

using the same procedure as above by using the dn of Eq. (4)

instead of the sn.

Step 1(b): contour-function calculation

The calculation of the contour functions again uses

B-spline analysis as used for the spine calculations. For

each value û along the nth GC's spine pn�û�; the following

steps give the contour function cn�t; û� :
1. Find a set of P 2 1 contour points de®ning the

endoluminal surface at pn�û�: This is done using the

same ray-casting technique of Stage 1, step 4, with

P 2 1 � 16: This gives a set of points ci; i �
0; 1;¼;P 2 2; that serve as knot points in the spline

calculations. These points, and other calculations,

involve 2D calculations in the local coordinate

frame for cn�t; û�: To de®ne a complete closed

contour consistent with the needs of the spline calcu-

lations, we add the point CP21 � C0 to give the

vector of knot points

Sc � � c0 c1 c2 c3 c4 ¼ cP22 c0 �T:

2. To ®nd the B-spline representation, we use the same
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development as for the spine calculation, but make

the following substitutions:

(a) Vector Sc takes the place of S in Eq. (18).

(b) The P £ P matrix D in Eq. (18) is replaced by

the �P 2 2� £ �P 2 2� matrix Dc, where

Dc � 1

6

4 1 0 0 ¼ 1

1 4 1 0 0

0 1 4 1 0

0 0 1 4 0

..

.
] ..

.

1 4 1

1 0 0 0 ¼ 0 1 4

266666666666666664

377777777777777775
:

This form accounts for the overlapping endpoints

at indices 0 and P 2 1.

(c) The control-point end conditions (29) are

replaced by

Vp � V0; VP11 � V1:

(d) P 2 1 spans again are used to represent the

closed contour, but they are parameterized on t

instead of u. Thus, for 0 # t , 1;

cn�t; û� � Ci�t 0�;
where

i � int{t�P 2 1�} 1 1; i � 1; 2;¼;P 2 1

and

t 0 � �t�P 2 1��2 i 1 1:

The calculation of the contour functions is then

done as for the spine functions, with the obvious

substitutions (e.g. c0 is substituted for s0 in Eq.

(21), etc.).

Step 2: construct segmented tree

After the spine and contour functions are computed, a

segmented image is readily generated by applying Eq. (8).

The image is built up by combining the GCs for all

paths n � 0; 1;¼;N 2 1; and sample values û �
0; u1; u2;¼; umax

n : At each sampled value û; the contour

function cn�t; û� is computed. The voxels covered by the

contour are included in the segmented image (nearest-

neighbor interpolation used). Also, endoluminal cross-

sectional area calculations are readily done using the

relation

area{cn�t; û�} �

XP 2 3

k�0

�ck £ ck11�1 �cP22 £ c0�
2

; �30�

where ` £ ' is for vector cross-product [39]. The Eq. (30)

used for the area calculation for cn�t; û� is based on the

(P 2 1)-sided polygon de®ned by the points ci; i �
0;¼;P 2 2: The polygon can be looked upon as enclosing

(P 2 1) triangles, each of which contributes an area term to

Eq. (30).

4. Results

The axes-generation algorithm has been tested on a wide

range of data. In this section we present phantom and human

results. We also give applications of the algorithm to

virtual-bronchoscopic assessment of human 3D CT pulmon-

ary images.

4.1. Phantom results

We created a computer-generated phantom consisting of

a single tube that branches into two tubes. Voxels located

inside the wall of either of two analytically de®ned curved

tubes are set to 127 (8-bit gray-scale) and background

voxels are set to zero. These mathematically generated

tubes have circular curvature (i.e. they each form one quad-

rant of a circle when viewed from the side) with a radius of

64 voxels. Assuming that each voxel is an isotropic cube of

dimensions (1 mm)3, then the radius is 64 mm and the

image dimensions are 128 mm £ 128 mm £ 128 mm. The

inner radius of the each tube's cross-section (lumen) is

10 mm and the outer radius is 15 mm. To give a noisy

image, we applied a window-average ®lter using a

3 £ 3 £ 3 kernel and then added Gaussian white noise �s �
10 gray levels).

No operator intervention was required for ®nding an

appropriate seed point w0, since the mathematical center is

voxel location (64,64,1) where the two tubes overlap. Fig. 7a

shows sagittal and coronal weighted-sum projections of the

phantom image along with automatically-generated paths.

Fig. 7b shows cross-sectional area measurements of each of

the two paths along with the true cross-sectional area of a

single tube. Note the ¯uctuation in cross-sectional area near

the bifurcation point at distance 32 mm. This is expected

because the cross-sectional area increases as the two tubes

begin to diverge until they no longer overlap. After the

bifurcation point is passed (distance� 45 mm), the cross-

section estimates are for the non-overlapping portions of

each tube, and the area measurement remains within a few

percent of the known 314.15 mm2 (dashed line) for each of

the tubes (black and white lines).

To test the method for anisotropically sampled image

data, we down-sampled the same phantom in z by a factor

of 5 resulting in voxel dimensions of 1 mm £ 1 mm £ 5

mm. This was accomplished by averaging the gray-scale

values at a given x±y coordinate over 5 slices to form a

single slice. Then, we added noise as before. Fig. 7c,d

shows the results of the algorithm using this image. Despite

the far lower resolution along the z-axis (note the stair-step

effect in the projection images), the path tracking performed

well. As expected, area estimation degraded due to the
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coarse z-resolution. Exhaustive phantom results for tubes of

other sampling factors and for cone phantoms, given in [38],

con®rm the ef®cacy of the algorithm.

4.2. Human studies

We next validated the methodology on a series of human

cases. These cases had earlier undergone standard 3D EBCT

(electron beam CT) scanning. They all involved upper-

airway obstructions, such as a stenosed airway from an

impinging cancer or a collapsed/compressed lung. All 3D

CT images consisted of 512 £ 512 transverse-plane slices,

with a slice thickness Dz � 3:0 mm. The number of slices in

the cases ranged from 24 to 80; scans were done to focus on

the region of interest. The transverse-plane resolution

ranged from Dx � Dy � 0:410 mm to 0.684 mm (One

case involved 230 0.531 mm-thick slices, with

Dx� Dy � 0:531 mm.).

We selected thirteen cases that had previously undergone

prior manual path de®nition using the VIDA 3D analysis

software [17,41]. The previous analyses done for these cases

involved a skilled technician manually segmented one

airway of interest. Axis measurements were next obtained

using a package called TGA (Tube Geometry Analysis)

contained in VIDA [41]. The basic steps performed in this

analysis are as follows: (1) manually segment the airway of

interest in all CT slices; (2) perform a shape-based interpo-

lation of the segmented airway, to give a higher-resolution

form of the segmented airway; (3) perform TGA analysis to

semi-automatically ®nd a central axis through the segmen-

ted airway. These steps required about 2 h of user interven-

tion for a typical case.

To compare results, we applied our proposed algo-

rithm using the starting point of the manual analysis

as the root site w0. Generation of the output results

required roughly two minutes of computer processing

per case (700 MHz Pentium-III PC used). Fig. 8

summarizes the results. These results focus on the

differences between the central axes de®ned manually

and automatically. Note the strong agreement between

the results. We point out that the manually generated

results, even though they were made painstakingly, are

not `perfect' ground truth. This is because manual

segmentation, shape-based interpolation, and the semi-

automatic path extraction method all introduce errors. If

anything, the automated results are more reliable. Fig. 9

shows pictorial and numerical results for a typical

human case in this study.
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Fig. 7. Computer-Generated Branching Tubular Phantom. Top row uses an isotropically sampled 3D image; i.e., Dx� Dy� Dz. Bottom row uses an

anistrophically sampled phantom; i.e., Dx� Dy� 5Dz. Part (a): extracted 3D axes are the dark lines. Part (b) Computed cross-sectional areas for the two

separate branches closely follow the ideal value from the exact analytically de®ned tube. Part (c): extracted 3D axes are the dark lines. Part (d): Computed

cross-sectional areas for the two branches still follow the ideal value from the exact analytically de®ned tube, despite the high down-sampling factor in the

digitized image data. (a) Weighted-Sum Projection Images of Tubular Phantom. (b) Cross-Sectional areas for two branches. (c) Projection Images of

Anisotropic Tubular Phantom. (d) Cross-Sectional areas for two branches.
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4.3. Application to virtual bronchoscopy

We have devised a PC-based system for virtual-broncho-

scopic (VB) assessment of high-resolution 3D CT chest

images. The system permits a user to build a multimedia

HTML case report for a given 3D image. The basic steps in

this evaluation are as follows:

1. Begin a case study by selecting a root site for the airway

tree.

2. Run the automated axes-generation algorithm to extract

the main airway axes, airway cross-sectional area values,

and segmented airway tree.

3. Use the system's many visual tools to peruse regions

along the extracted axes. During this analysis, interesting

snapshots and movies can be saved.

The details of this system are described elsewhere [15,16]. It

is well-acknowledged that precomputed guidance data are
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Fig. 9. Manual verus automatic axis generation for a speci®c human case. The 3D EBCT image consisted of 40 512 £ 512 3.0mm-thick slices with Dx�
Dy� 0.684mm. Average coordinate difference � 1.49; normalized coordinate difference � 0.138. Top: Coronal maximum-intensity projection showing

automatically computed axis. The axis consists of 123 sites. An automated segmentation approach was used to remove the bones and mediastinal structures

form the data before the projection was computed [8]. Bottom: 3D view of manual (solid line) and automatically-computed ( 1 line) axes.

Fig. 8. Comparison of axis accuracy between manual and automatic meth-

ods. Thirteen 3D human CT cases, previously analyzed manually using

VIDA are included in the study. ªCoordinate Differenceº refers to mean

3D image coordinate difference between a point on a manually de®ned axis

and the corresponding automatically computed axis (1 unit � 1 voxel).

ªNormalized Coordinate Differenceº is computed by normalizing the coor-

dinate difference by the average diameter of the manually de®ned axis (1

unit � 1 diameter unit). The average airway diameters for the cases ranged

from 3.42mm (5.0 voxels) to 12.31mm (9 voxels). The standard deviation

(ªstd. dev.º is computed for these two measures over the 13-case database.
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required for effective VB-based evaluation of a 3D CT scan.

We have applied the axes-generation algorithm proposed in

this paper for guidance. In this section we give two examples.

Example #1: A patient suffering from tracheomalacia

(collapsed trachea) underwent an EBCT scan. Using a

single 20-sec breath hold, a 3D EBCT image made up of

133 contiguous slices was reconstructed. Each slice consists

of 512 £ 512 voxels (slice thickness Dz � 1:5 mm axial-

plane resolution Dx � Dy � 0:586 mm). As discussed in

Section 3.3 (step 1), we used the VB system to de®ne a

root site. An axis through the collapsed region was

computed. This calculation required approximately 1 min

of computation on a standard 700 MHz PC. This axis served

as guidance data for interacting with the VB system.

Fig. 10 depicts a snapshot of the VB system. The solid

line on the Coronal Projection image is the computed axis.

Also, the Plot Tool shows a plot of cross-sectional area

versus distance along the axis. One site near the `bend' in

the collapse was selected on the Plot Tool. This site is then

highlighted on all other activated tools (Coronal Projection,

Coronal Sliding Thin-Slab, and Cube Tools). The various

views clearly show both visually and numerically the nature

and extent of the collapse.

Example #2: A patient with a previously inserted stent,

underwent an EBCT scan. As before, using a single 20-sec

breath hold, a 3D EBCT scan was done. The reconstructed

image consisted of 123 contiguous slices (512 £ 512 voxels

per slice, slice thickness Dz � 1:5 mm, axial-plane resolu-

tion Dx � Dy � 0:586 mm). We used the VB system to

de®ne a root site. A complete set of axes through the

major airways was extracted. This analysis again took on

the order of 1 min on a 700 MHz PC.

Fig. 11 depicts part of the analysis of this case. The

Coronal Projection shows the extracted airway tree axes.

The 3D Surface Tool also depicts the airway tree axes in

addition to the segmented airway tree. The STS Coronal

Slab and Cube Tool clearly show manifestations of the

stent. The small cross-section views give shots at a particu-

lar site. Again, the system composite view provides many

renditions of the region of interest.

5. Discussion

For typical high-resolution 3D CT chest images, the

proposed axes-generation algorithm requires less than a
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Fig. 10. VB assessment of a human suffering from tracheomalacia. The input 3D CT image was 512 £ 512 £ 133 (Dx � Dy � 0:586 mm; Dz � 1:5 mm). The

proposed axis-generation algorithm was used to extract a path through the region of the collapse. This axis is depicted as a line on the Coronal Projection tool

(maximum-intensity projection computed, data between 200 # y # 300 used to create view). The computed airway cross-sectional values along this axis are

depicted on the Plot Tool. The large dot on the Plot Tool represents a site selected by the user. All other activated tools (Coronal Projection, Cube Tool, and

STS Coronal Slab) depict renditions of the 3D CT data at this selected site. The Cube Tool shows a composite of the standard three MPR (transverse, sagittal,

and coronal) slices at this site; the pointers on these views indicate the direction of travel along the axis for this site. The STS Coronal Slab shows a coronal

front-to-back depth-weighted maximum thin slab (slab thickness� 20, depth of vision� 30) at the site [42]. These views clearly show the manifestation of the

collapse in several different ways.
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few minutes of computation time on a standard PC. The

algorithm uses the gray-scale data directly, and it does not

require any interpolation or prior segmentation. With small

modi®cation, the algorithm could be applicable to other 3D

tree-®nding problems. Further work could be done in adapt-

ing the approach to ®nd paths to preidenti®ed suspect sites,

such as airway narrowings and cancerous lymph nodes.

Also, the method can have dif®culty in cases where the

airway wall becomes very thin, as a result of partial-voxel

artifact. For such cases, the method can escape into the

lungs and ®nd many super¯uous axes. Potential solutions

to this problem are to incorporate iterative re®nement and to

have more robust wall-detection methods.

The method has been tested on phantom, animal, and

human cases. This paper presented results for phantom

and human cases. Refs. [38,43] give validation for animal

cases. These results demonstrate the ef®cacy of the method.

Further, the method has been integrated into Sun and

PC-based software systems for virtual bronchoscopy

[8,9,15,16,44]. Perhaps most signi®cantly, we have success-

fully applied the method to live VB-based guidance of

bronchoscopy for phantom and animal cases [15,16,44].

6. Summary

Major airway obstruction is a common problem arising

from lung cancer, benign processes, and other tumors that

commonly metastasize the airways. Three-dimensional

(3D) computed-tomography (CT) pulmonary images are

often used for evaluating such cases. The physician typi-

cally evaluates a case by using 3D mental reconstruction

of anatomical structures depicted in the images. While

often suitable for the radiologist, this form of evaluation is

typically inadequate for the bronchoscopist, who need

precise 3D `road maps' to the surgical sites of interest.

Virtual bronchoscopy (VB) has emerged as a paradigm

for more effective 3D CT image evaluation. Systematic

evaluation of a 3D CT chest image using VB techniques,

however, requires precomputed guidance data. This
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Fig. 11. VB assessment of a human having a misplaced stent encroaching stent. The input 3D CT image was 512 £ 512 £ 123 (Dx � Dy � 0:586 mm;

Dz � 1:5 mm). Our axis-generation method was used to compute a complete set of axes through the major airways and a segmented airway tree. These axes

are depicted on the Coronal Projection Tool (maximum-intensity projection computed, data between 200 # y # 300 used to create view) and 3D Surface Tool.

A site near the base of the stent by the main carina was selected on the 3D Surface Tool; this selected site is depicted as a large ball and needle in the 3D

Surface Tool's view. All other activated tools (Coronal Projection, Cube Tool, STS Coronal Slab, and two Cross-Section Tools) depict renditions of the 3D CT

data at this selected site. The Cube Tool shows a composite of the standard three MPR (transverse, sagittal, and coronal) slices at this site; the pointers on these

views indicate the direction of travel along the axis for this site; the Coronal view clearly shows a longitudinal view of the encroaching stent. The STS Coronal

Slab shows the geometry of the stent and surrounding structures at the site (front-to-back depth-weighted maximum, slab thickness� 20, depth of

vision� 30). The Cross-Section Tool views show locally orthogonal views at the selected site. Finally, the 3D Surface Tool clearly shows the narrowness

of the airway at the location of the stent.
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guidance data takes the form of central axes, or centerlines,

through the major airways. We propose an axes-generation

algorithm for VB assessment of 3D CT chest images. For a

typical high-resolution 3D CT chest image, the algorithm

produces a series of airway-tree axes, corresponding airway

cross-sectional area measurements, and a segmented airway

tree in a few minutes on a standard PC.

Our algorithm follows a two-stage approach. The ®rst

stage computes a Discrete Model that consists of a

sparsely spaced set of data corresponding to the major

airway axes. The second stage then uses the Discrete

Model to de®ne a smooth set of airway axes, a segmen-

ted airway tree, and other measurement data; these data

constitute the Generalized Cylinder (GC) Model. The

basic ¯ow of the two-stage algorithm is as follows.

The user ®rst speci®es a starting point of interest for

the airway tree, generally in the proximal end of the

trachea. Then, to perform the Stage-1 calculation of the

Discrete Model, an adaptive 3D searching technique

steps through the 3D image, building up a sparsely

sampled set of central axes for the major airways.

Stage-2 then applies a cubic-spline analysis and

contour-®nding procedure to the Discrete Model data

to give a generalized cylinder representation for each

airway central axis; this gives the GC Model.

Quantitative results for phantom and human airway-

obstruction cases demonstrate the ef®cacy of the algorithm.

Also, the algorithm is used in conjunction with a PC-based

system for virtual-bronchoscopic (VB) assessment of high-

resolution 3D CT chest images. In this context, the algo-

rithm is demonstrated for two cases involving major airway

obstructions.
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