
System for the Analysis and Visualization of Large 3D Anatomical Trees

Kun-Chang Yu,1 Erik L. Ritman,2 and William E. Higgins1,∗

1Dept. of Electrical Engineering, Penn State University, University Park, PA 16802 USA
2Dept. of Physiology and Biophysics, Mayo Foundation, Rochester, MN 55905 USA

∗Corresponding author. Fax: 1-814-863-5341. Email address: weh2@psu.edu

Abstract

Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D
digital images of various anatomical trees. The large size and complexity of these trees make it
essentially impossible to define them interactively. Automatic approaches have been proposed
for a few specific problems, but none of these approaches guarantee extracting geometrically ac-
curate multi-generational tree structures. This paper proposes an interactive system for defining
and visualizing large anatomical trees and for subsequent quantitative data mining. The system
consists of a large number of tools for automatic image analysis, semi-automatic and interactive
tree editing, and an assortment of visualization tools. Results are presented for a variety of 3D
high-resolution images.

Keywords: 3D visualization, anatomical trees, micro-CT imaging, multidetector CT, arterial
trees, tree analysis, virtual endoscopy, data mining.

1 INTRODUCTION

Modern micro-CT [1–5] and multi-detector CT scanners [6,7] can produce high-resolution 3D digital

images of various anatomical tree structures, such as the coronary or hepatic vasculature [4, 8–10]

and the airway tree [11]. For example, a typical 3D micro-CT image of the coronary arterial

tree can consist of several hundred megabytes of image data, with a voxel resolution on the order

of ten microns, and depict many generations of connected branches. The quantitative analysis

and subsequent visualization of such images poses a considerable challenge. The sheer size and

complexity of such images makes interactive manual tree definition out of the question. We propose

a system for the complete definition and quantitative analysis of anatomical trees contained in high-

resolution 3D digital images.

Rudimentary automated techniques for the definition of the vascular and hepatic trees have

been previously suggested [4, 8–10, 12–15]. Also, partly in recognition of the great complexity

of vascular trees depicted in large 3D images, some automated analysis work has only focused

on a principal pathway, where a principal pathway is designated as one selected path from the

beginning of the tree (the “root”) to the end of one terminating branch [16–18]. A few recent efforts

have proposed rudimentary interactive “point and click” editing for deleting unwanted branches in

vascular trees [10] and deleting unwanted subtrees in cerebral vascular networks [19].

While existing techniques can give a high percentage of apparently correct branches, no tech-

nique guarantees geometrically accurate multi-generational tree structures, even to generation N ,

1

where integer N is less than the total number of branch generations depicted in an input image.

Tree errors occur because of insufficient data resolution, artifacts from improper image reconstruc-

tion, flaws in specimen preparation, and imperfections arising in acquiring the image data during

scanning [4]. Figure 1 illustrates the basic problem. Various defects can occur in the defined re-

sult, such as: (a) missed branches; (b) broken branches; (c) spurious branches, resulting in extra

bifurcation points and errors in branch generation indices; (d) anatomically implausible loops; (e)

imprecise axes definition within a branch-point region, producing incorrect local branch geometry;

and (f) improperly centered branch axes, resulting in incorrect branch measurements. These prob-

lems result in a tree that has an incorrect geometrical structure. Further, errors arising in the first

few generations cause errors to propagate to all other generations.

FIGURE 1 here.

These observations lead to the basic philosophy we used in designing our proposed system: (1) it

is unrealistic and counterproductive to rely strictly on improved scanning technology and improved

automated image-processing algorithms for defining an accurate tree; (2) automated techniques,

despite their imperfections, are essential in providing a complete description of a tree, as they can

provide a high percentage of the correct tree structure; (3) judicious human interaction is essential

for arriving at accurate useful analysis of a tree.

This paper describes our system, dubbed the Tree Analyzer. Section II gives an overview of the

system, Section III describes the system architecture, Section IV discusses how the system is used

to process a given 3D image, and Section V provides quantitative and pictorial results for various

3D micro-CT and multi-detector CT images. Finally, Section VI offers concluding comments.

2 SYSTEM OVERVIEW

The qualitative design criteria that drove the Tree Analyzer’s construction are as follows: (1) be

computationally efficient; (2) require only a reasonable amount of human interaction; (3) function

over a wide range of anatomical and data variations. The system consists of three components:

1. A top-level graphical user interface (GUI) for performing all interactions.

2. A 3D image-processing toolbox for automatic image analysis.

3. A set of interactive tools for visualization, tree editing, and data mining.

Section 3 provides more detail on these components. The user applies the system to a given 3D

image following a four-stage approach (Figure 2):

1. Apply automated image analysis to extract an initial raw tree and generate tree surface data

suitable for follow-up visualization and tree editing.

2

2. Automatically define the initial raw central axes, or centerlines, for the extracted tree.

3. Automatically “diagnose” the tree for possible tree defects, such as broken branches, loops,

etc., per Figure 1. Next, invoke various semi-automatic and interactive tools to examine and

correct the identified tree defects.

4. Perform interactive data mining to extract and examine quantitative tree data.

At the end of this process, the user has a quantitative description of the desired anatomical tree.

Section 4 gives detail on this process. As the Tree Analyzer has considerable breadth and capability,

we cannot give complete detail on all of its functionality in this paper. References [20–24] provide

supplemental details on various aspects of the system.

FIGURE 2 here.

The Tree Analyzer was built on a PC platform and greatly expands upon the earlier system of

Wan [10]. The software was developed using Visual Studio.Net 2003 and Visual C++. The code for

managing windows and dialogue boxes, for performing basic input-output, for storing data objects,

and for accomplishing other functions, draws upon the standard Microsoft Foundation Class (MFC)

library. Supplemental user interface components draw upon those in the Business Component

Gallery (BCG), an extension library for MFC. Some of the Tree Analyzer’s visualization features

are derived from functions in the Visualization Toolkit (VTK) and OpenGL [25,26].

For a given input 3D image, all data components for a completely processed tree are stored

in a central data structure referred to as the case study [27]. All system inputs, interactions, and

outputs occur through the case study. The case study contains the following data elements:

1. Original 3D gray-scale image

2. 3D image of the segmented tree

3. Central axes of the tree

4. Surface data for rendering the tree

5. A script containing the sequence of automated image-processing operations used for perform-

ing all Stage-1 and Stage-2 (raw tree extraction and centerline analysis) analyses.

6. Text notes for documenting observations on the case

7. Quantitative data describing the axial structure of the tree

8. Viewing parameters saved for visualizing a tree during an interactive data-mining session.

The construction of the case study occurs through user interactions and command invocations with

the Tree Analyzer’s GUI following the four-stage processing flow of Figure 2. The case study serves

3

as a repository for all data elements during the analysis of a 3D image, and it also enables a user

to save work during different interactive sessions.

3 SYSTEM ARCHITECTURE

This section overviews the Tree Analyzer’s three major components: the GUI, the 3D image-

processing toolbox, and the interactive tools.

3.1 Graphical User Interface (GUI)

Figure 3 gives a sample composite view of the Tree Analyzer’s graphical user interface. The

default system toolbar at the top of the GUI follows the standard Microsoft software lay-out. The

“File” options provide standard means for performing load and write operations on data inputs

and outputs. The “Edit” options enable various tree editing functions, such as invoking automated

analysis to extract the raw tree and for performing various tree modifications. The “Global” options

refer to the mode of operation when multiple visualization tools are simultaneously running. The

“Tools” options give a list of the various visualization tools available to the user. Finally, the

“View,” “Window,” and “Help,” options offer a number of standard aids found in Windows-based

software packages. The second row of the GUI in Figure 3 provides toolbar commands that the

user can pick to begin and build a case study and to invoke various tree editing functions.

FIGURE 3 here.

The bottom portion of the GUI in Figure 3 depicts, from left to right, the data elements of

the currently loaded case study, the current position of the picker, and two panels for a Tree

Diagnostician, which is used for automatically identifying defects in the currently loaded tree (see

Section 4). The picker represents a specific 3D site of interest focused on by the system. All invoked

visualization tools tend to depict views relative to the picker’s location.

The remainder of the screen space is dedicated to various selected visualization tools. Figure

3 shows two rendering views; many others are possible as discussed below. Notably, Figure 3 only

occupies one computer monitor. Yet, the images we have been studying in our research tend to be

very large and rich in detail. Hence, to gain a fuller appreciation of the contents of the 3D image

data, we have tended to use the Tree Analyzer with a display extending over two monitors. Figure

4 gives an example display for the second monitor.

FIGURE 4 here.

4

3.2 3D Image-Processing Toolbox

The 3D Image-Processing Toolbox is integrated as part of the kernel in the Tree Analyzer’s soft-

ware structure. Invoked either from the Edit option or toolbar, it enables the construction and

invocation of a script used for performing Stage-1 and Stage-2 automated analysis. A script consist

of a sequence of selected operations to perform a specified image-processing task [28]. Over 100 op-

erations are available in the following general categories: (a) image enhancement; (b) mathematical

morphology operations for shape-based image analysis; (c) topological operations for defining con-

nected components, deleting interior cavities, extracting and manipulating central-axes structures,

etc.; (d) image segmentation; (e) image manipulation operations, such as adding two images and

performing simple logical combinations of images; and (f) other miscellaneous system operations,

for manipulating intermediate results, input-output, and computing region surface representations.

The user interacts with the Tree Analyzer’s GUI to construct a sequence of desired operations.

In general a specialized script must be constructed for anatomical trees of a particular type (e.g.,

coronary arterial tree or airway tree) and derived from a particular scanner type (e.g., micro-CT

scanner or a multi-detector CT scanner). In our research, we have constructed scripts for extracting

the coronary vasculature, hepatic vasculature, and airway tree. We have used essentially the same

script for all three of these problems, with the significant change being in the image segmentation

method chosen. The Stage-2 centerline analysis is independent of the problem considered, provided

the input is for a branching anatomical tree.

3.3 Interactive Tools

A large set of interactive tools are available for visualization, tree editing, and data mining [29,30].

Below is a list of the basic tools:

1. Global and local surface renderings of the segmented tree (3D Render tool). The global

rendering shows the entire tree, while a local rendering zooms in on a particular site of

interest. These views also depict the defined central axes of the tree.

In addition, stereo glasses can be used to perceive the tree’s branch structure in “true” 3D.

Stereo viewing enables the user to gain a greater appreciation of a given tree’s topology. We

have used inexpensive stereo glasses by ProView ($6.95 per set) for stereo viewing.

2. Transverse, sagittal, and coronal slice views. These are standard 2D sections of the gray-scale

data oriented in the x-y, y-z, and x-z planes, respectively [7].

3. Transverse, sagittal, and coronal projections, which give 2D orthographic projections of se-

lected subsets of the gray-scale data along either the z, x, or y viewing directions, respectively.

5

4. Transverse, sagittal, and coronal thin-slab renderings, which enable more sophisticated views

of subsets of the gray-scale data.

5. A bounding box feature that enables the user to view either a 3D rendering, slice, projection,

or slab view focusing on a localized 3D bounding box about a selected 3D site of interest.

6. A tree map that depicts the defined axial structure of the tree in a graphical form, enables

some basic tree editing, and provides local quantitative tree data.

7. A quantitative summary of an extracted tree [10].

The Tree Analyzer uses a series of VTK functions to compute 3D renderings and to perform stereo

viewing [25]. Figure 3 gives examples of the 3D Render tool, while Figure 4 illustrates examples

of the slice, projection, and slab tools. Thin slabs incorporating data depth and various gray-scale

window settings can be computed to reveal more structural data inside a 3D volumetric image than

possible with basic orthographic projections [31]. Figure 4 also gives an example of the bounding

box feature. Anatomical trees can have an extremely dense 3D structure, as shown by a few

examples later in this paper. The bounding-box feature can be particularly useful for focusing

attention on complex interior 3D regions of interest. This feature enables the detailed study of

a particular local tree region and is also useful for interactively fixing local tree defects. Figure

14, discussed later, gives an example of a quantitative summary. References [20, 21, 23, 24] give

other examples and discuss other capabilities of the Tree Analyzer’s tools. Most of the tools above

can be found in various forms in other software packages; e.g., [7, 25, 32–34]. The Tree Analyzer,

however, has an extensive number of unique capabilities for editing and performing data mining on

3D anatomical trees.

3.3.1 Interaction Modes

All tools “obey the system,” per the user’s movement of the computer mouse. The current system

status while working with a 3D image is captured in the view state. The view state graphically

exists as the picker and appears either as a ball or a set of cross hairs in the visualization tools. It

is numerically given in the Global Status window (bottom of Figure 3, second from the left). In

general, to interact with an extracted tree, the user points to either a tree rendering or some other

active view. All other active views then follow the current view state. Thus, for a selected 3D site,

the user gets a composite view of image data about the site through the use of the multiple tools.

During interaction, the visualization tools can present data via four viewing modes:

1. Fixed — The current 3D site of the mouse appears on the view, with no other view change.

2. Move — The view becomes centered about the 3D site with no view-magnification change.

6

3. Detail — The view zooms in and becomes centered about the 3D site.

4. Navigation — The view shows an interior (virtual endoscopic) view of the tree branch at the

selected 3D site (3D Render tool only) [35].

A major and novel capability is the Tree Analyzer’s extensive facility for editing 3D trees. To

facilitate this capability, four modes of operation exist for interacting with the central axes and 3D

renderings through the picker. These modes all act within the camera space observable through a

3D Render tool and enable selection of points in 3D space:

1. Tree mode — When the picker (mouse cursor) is moved over a 3D rendering and a point is

selected by clicking the mouse, the nearest currently defined central-axis point is selected.

2. 3D Site Locator — The picker acts as a “shooter” through 3D space and can be used to select

any 3D point in a 3D rendering. This is done in two steps. First, a point of interest is selected

on a 3D rendering from an initial view of a tree; this defines a 2D line of possible points in

3D space along the shooter’s point of view. Next, the user rotates the view appropriately and

selects a point on the line to complete the definition of the desired 3D point. See Figure 5.

3. Intersection Locator — The user situates the picker over a portion of a 3D rendered tree

surface; this defines a line segment through which the shooter’s point of view passes through

the existing surface. The midpoint of this line segment is selected as the point of interest.

4. 3D Cursor — The user can move about in 3D space and confine attention to a focal plane or

parallel planes in x, y, and z, as determined by the location of the picker; one axis is locked

and the other two free axes can be varied as the user moves the cursor about a 3D Render

view. This can bring up various slice and thin-slab views relative to the selected focal plane,

as shown in Figure 6.

FIGURES 5 AND 6 here.

While considerable flexibility exists for moving about the 3D data, this is often a difficult way to

glean the topological structure and connectivity of a tree. This is because the branches of a tree

can twist and meander in essentially any direction in 3D. The Bounding Box feature and the Move

and Detail viewing modes can help the user focus on local portions of a tree.

3.3.2 2D Tree Map

While the Bounding Box feature and the Move and Detail modes are helpful, they still cannot

overcome the difficulties of perceiving the hierarchical complexities of a large tree. The 2D Tree

Map is a particularly effective tool for overcoming these difficulties in the 3D perception and editing

of an extracted 3D tree. It has considerable functionality for tree visualization, quantitative data

7

mining, and tree editing, and it greatly expands upon a similar rudimentary tool integrated in the

Analyze/AVWTM package [36]. This section discusses the 2D Tree Map’s visualization capabilities,

while subsequent sections illustrate the tool’s use for tree editing and data mining.

The 2D Tree Map is based around a 2D symbolic representation of a tree. It essentially “flattens”

out the 3D tree into a 2D symbolic data structure, and, hence, is often much easier to manipulate

than the 3D x-y-z spatial-domain representation of the tree. Technically, the 2D Tree Map presents

the extracted axial structure of the anatomical tree as a hierarchical directed graph [37]. Graphs

have shown much utility for data mining and for information navigation and visualization [38]. The

graph representation in the form of a tree is ideal for presenting anatomical tree structure. Figure

7 gives an example of the 2D Tree Map.

FIGURE 7 here.

For the 2D Tree Map, nodes represent either branch points or branch terminations, while edges

represent tree branches. In general the first branch of the tree represents the root branch, which

subsequently bifurcates at a node, representing the tree’s first branch point, to form child branches.

Child branches in turn spawn more generations of branches. The 2D Tree Map goes well beyond

display of mere branch hierarchy. Considerable quantitative data is also accessible numerically

and visually from the 2D Tree Map. Branch number and generation index, branch length, average

branch cross-sectional area (CSA), average branch diameter, and CSA and diameter along distinct

local sites of a branch are also available, as discussed below.

The example of Figure 7a only shows generations 0 through 4, whereas the complete tree

actually has 15 generations. A red node enclosing a “-” sign signifies a branch point. All other

nodes terminate branches or portions of the tree and give access to other information. A solid green

node denotes a terminated branch. A blue node with a “+” inside means that branch generations

>4 exist at the node. The user can click on such a node to reveal generation-5 information. By

further clicking on the “+” nodes, the tree expands further. In addition, the user can click with

the middle mouse button on an interior tree node and spawn a separate local 2D tree map (Figure

7b). These facilities for expanding and contracting portions of a tree and for spawning separate

local 2D Tree Maps are extremely useful for examining the structure of large complex trees.

In a given view, the branches are ordered from left to right, with the leftmost branch spawned

by a particular branch point having the largest average diameter and the second child branch

appearing to the right. Thus, the node ordering in the tree map depends on the quantitative

shape attributes of tree branches. This convention gives rise to a standard branch labeling scheme,

independent of the anatomy [39], that can be shown on the Tree Map if desired. The root branch is

designated by the ordered pair (0,1) (generation 0, branch 1). The child branches of the root branch

8

are labeled as follows. The largest-diameter branch at generation 1 is designated (1,1), while the

remaining generation-1 branch is designated (1,2). Child branches spawned by (1,1) are labeled

(2,1) and (2,2), while child branches spawned by (1,2) are labeled (2,3) and (2,4). Continuing on

to generation 3, children of branch (2,1) are labeled (3,1) and (3,2), etc. If, for example, branch

(2,2) has no children (i.e., it is a terminating branch), then labels (3,3) and (3,4) are skipped and

labeling continues for the children of (2,3), which get labels (3,5) and (3,6), etc. Trifurcations and

higher can be easily handled in this scheme.

Further, the user can click on a node to reveal a quantitative summary of the tree at that

location, giving branch and generation index, branch length, and average branch cross-sectional

area (CSA). Figure 7 illustrates these capabilities. Quantitative information can also be displayed

visually with the tree map itself. For example, Figure 7a actually displays branches in average-

diameter mode: the width of each branch in the tree map is proportional to its actual average

width, as derived from the segmented tree. In Figure 7b, the 2D Tree Map is in diameter mode:

the diameters of all 2D cross-sections constituting a particular branch are graphically depicted

along a branch’s extent in the 2D Tree Map. Finally, the local 2D Tree Map in Figure 7b is also

in length mode: the length of each depicted branch is proportional to the actual branch length,

with actual accumulated length given along the right-hard side of the view. Cross-sectional area

can also be presented visually on a 2D Tree Map.

As with the other visualization tools, the user can point to a branch or node in the 2D Tree

Map, which in turn highlights the corresponding 3D sites in the other active 2D graphical viewing

tools. This often tends to be much easier and far more intuitive with the 2D Tree Map than with

other tools. Several useful interactive functions of the 2D Tree Map exploit this feature.

Subsets of extracted branches that connect together to form a loop generally indicate an anomaly

in the automatic segmentation of the raw tree, as such loops are seldom anatomically plausible.

Loops have a special display form in the 2D Tree Map. The involved branches are displayed in

yellow and the involved branch-point nodes are colored red and outlined in yellow (illustrated later

in Figure 11). The user can then point to a node within the loop and examine the 3D image data

about this region in other visualization tools.

4 SYSTEM USAGE

This section describes how to produce a complete tree and its associated quantitative description,

per the procedure summarized in Figure 2. For Stages 1 and 2, the user loads an image to begin

a case study and then runs a script to generate the raw segmented tree, surface data, and central

axes. Next, in Stage 3, the Tree Diagnostician provides a list of possible tree defects, and the user

9

applies various graphical tools to correct the defects. Finally, a quantitative summary is produced

for the final tree in Stage 4. More detail appears below on these steps.

4.1 Stages 1 and 2: Automated Processing Operations

The first two stages involve automated processing operations for defining the initial raw tree and

its centerline structure. These operations, all part of the 3D Image Processing Toolbox, are defined

in a script and run automatically. The basic operations applied to input 3D image I are as follows:

1. Apply a 3×3×3 sigma filter to reduce noise, while preserving thin line-like structures [40].

2. Produce a raw segmented tree Is by applying a region-growing approach.

3. Perform 3D cavity deletion to fill interior cavities in the raw segmented image. This gives

image Is consisting of solid cavity-free regions.

4. Using input image I and segmented image Is, produce a surface representation of the tree.

5. Compute the raw central-axis structure of the segmented image, using the tree’s surface

representation as input. This step also produces diameter and curvature information for the

tree at discrete sites along the computed central axes.

6. Compute an initial profile of quantitative information for the raw tree.

First, we have applied this basic procedure to cardiac, liver, and lung images. The one difference

in the scripts for these different applications has been the choice of image segmentation algorithm

for lung-image analysis.

For image segmentation, we have employed either symmetric region growing (SymRG) or a

refined adaptive full-width half-maximum (FWHM) SymRG method for micro-CT image segmen-

tation. SymRG is a form of seeded region growing that is insensitive to the locations of the initial

region-growing points and that admits a memory- and computation-efficient implementation [4,41].

Key to region growing’s effectiveness are the inclusion criteria used for adding new region points

during the growing process. Previously proposed work using the SymRG paradigm for segmenting

anatomical trees depended on ad hoc selection of a global threshold range [4]. This resulted in

trial-and-error repeated runs of region growing and, ultimately, in conservative tree segmentations

missing many valid branches. The adaptive FWHM SymRG method overcomes these difficulties,

giving a method that does not require user trial-and-error to find adequate parameters and that

is able to extract many missed branches. We briefly highlight the method below; complete detail

appears in [23]. First, a locally adaptive half-maximum image IHM is computed:

IHM (x, y, z) = median (I(x, y, z), σ) ≈ I ∗Gσ(x, y, z) (1)

10

where median(I(x, y, z), σ) represents a σ × σ × σ median-filtered version of input image I. The

far right-side of (1) gives a quantity that is far easier to compute than the median and represents

I filtered by a σ × σ × σ Gaussian Gσ(·, ·, ·) (“*” represents convolution). For each image point

(x, y, z), (1) gives the local half-maximum value IHM (x, y, z) within a σ×σ×σ neighborhood about

(x, y, z). In our work, we have assumed σ denotes the nominal standard deviation of the imaging

scanner’s point-spread function (PSF), where the PSF is approximated by a Gaussian distribution.

The half-maximum value in a local neighborhood has commonly been used by others for detecting

boundaries between bright and dark regions. Using the adaptive half-maximum function IHM , the

next step is to create a threshold image:

ITH(x, y, z) =

Imin, IHM (x, y, z) < Imin(x, y, z)
IHM (x, y, z), if Imin(x, y, z) ≤ IHM (x, y, z) ≤ Imax(x, y, z)
Imax, IHM (x, y, z) > Imax(x, y, z)

(2)

In (2), Imin is either a global threshold value above which all branches are assumed to lie or it is

a locally varying quantity that can be found, for example, by applying a gray-scale morphological

opening Imin = ((I ªB)⊕B), where ª is morphological erosion, ⊕ is morphological dilation, and

structuring element B has a size sufficiently large to encompass any expected valid branches. Imax

in (2) is selected to avoid segmenting out spurious extreme bright artifacts (such as metal clips) in

the background. The threshold image ITH then serves as the 3D image input to standard SymRG.

Relative to the original 3D gray-scale I for the anatomical tree, ITH has four attributes making it

much better suited for segmenting a tree: (1) it greatly accentuates the local differences between

true tree branches and background; (2) it is relatively insensitive to the absolute brightness of a

branch; (3) it better separates potentially merging weaker branches: and, most importantly, (4) it

removes the need for trial-and-error parameter selection in segmenting the desired branches. Figure

8 illustrates the effectiveness of adaptive FWHM SymRG over standard SymRG.

FIGURE 8 here.

Note that the raw segmented tree in Is after step 2 may have interior cavities. This is topologi-

cally incorrect and greatly affects the resulting central-axes analysis. Hence, well-known 3D cavity

deletion is applied to fill cavities in Is [33,41]. A cavity manifests itself in segmented image Is as a

set of 0 voxels completely surrounded in 3D by 1 voxels (voxels that belong to a segmented tree).

A cavity is easily identified by locating 3D connected components of 0 voxels that do not touch the

outer border of the image.

Given I and cavity-filled Is, a surface representation of the segmented tree is next generated.

The surface representation is a series of triangles covering the exterior surface of the tree and is

used for later surface rendering. It is produced from a gray-scale mask image IM using the standard

Marching-Cubes algorithm implemented in VTK [25] (threshold value 0). The gray-scale mask IM

11

is formed via

IM = (IS ⊕B − IS ªB)× (I − ITH)

where B is a 3×3×3 structuring element, and ITH is the threshold image (2) derived during image

segmentation.

Stage-2 centerline analysis is next performed. Given the importance of this stage — it is the

stage that actually produces the first quantitative description of a tree, we designate a separate

stage for it. Before proceeding, we first introduce some notation. Define a tree T as consisting of

a set of 3D sites V and a set of branches B:

T = {V, B}

The two sets constituting T are given by V = {v1, v2, . . . , vK} and B = {b1, b2, . . . , bJ}, where K

and J are integers ≥ 1, each vk ∈ V is a 3D site along one of tree T’s central axes, and each bj ∈ B

is one of the central-axis branches of T. A particular branch b ∈ B is defined by a set of contiguous

3D sites vb(k) ∈ V:

b = {vb(1), vb(2), . . . , vb(Eb)}

where vb(Eb) is the terminating, or end, site of branch b, integer Eb ≥ 2 (a branch must consist of

≥ 2 3D sites), vb(k) ∈ V(b), and V(b) ⊂ V denotes a subset of 3D sites constituting branch b. All

viewing sites v ∈ V belong to one and only one branch, except possibly those sites that begin and

terminate branches. For example, if branch b2 is a child branch of b1, then

vb2(1) = vb1(Eb1). (3)

3D sites that do not begin or terminate a branch will be referred to as interior sites. 3D sites such

as vb1(Eb1) in (3) will be referred to as branch, or bifurcation, points. In general a given 3D image of

interest might contain one or more trees, T1, T2, etc. These multiple trees might be valid trees —

e.g., a venous and arterial tree — or they might correspond to broken trees or artifacts, produced

because of difficulties in processing a given image.

In this work, we have previously used the centerline methods of Wan et al. and Kiraly et

al. [10, 42]. Wan’s method is based on 3D thinning and provides branches based on integer coor-

dinates; it unfortunately gives many false branches and poorly centered branches. The method of

Kiraly partially alleviates these issues by eliminating many false branches and defining 3D sites on

smooth B-spline curves. Both of these approaches base their calculation of the centerlines off of the

segmented image Is. However, our current work now uses the superior approach of Yu, which bases

its centerline analysis off of the more precise surface representation [21,23]. This method, built on

a differential geometry analysis of a tree’s surface’s curvature, gives a more robust, better-centered

12

set of branches, with fewer false branches, better defined bifurcation regions, and the facility to

separate branches that appear merged in Is.

Figure 9 compares the raw centerlines produced by four methods at a complex junction: the

three methods mentioned above and Analyze/AVWTM , a well-known system for 3D medical im-

age analysis and visualization. The central axes generated by Analyze/AVWTM are not smooth,

because this system represents 3D points in integer format. The Analyze/AVW tool also produces

many spurious small branches [43]. While the method of Kiraly et al. generates substantially

smoother results and fewer false branches than Wan et al., it does not define central-axes structure

near branch junctions plausibly. Further, it often does not center the extracted axes properly and

is not able to separate branches if they touch in the input segmented image [23].

FIGURE 9 here.

After centerline analysis, a preliminary quantitative profile of the extracted raw tree structure is

produced. More detail appears on these calculations in Section 4.3. To conclude, the final outputs

after Stage 1 and 2 automated analysis are the surface data for all extracted trees, and central-axes

sturctures T1 = {V1,B1}, T2 = {V2,B2}, T3 = {V3,B3}, . . . Our work to date has focused on

defining one complete tree. As later results will show, however, certain trees appearing in Is may

in fact be “broken” trees that need to be reconnected to form a complete main tree.

4.2 Stage 3: Identify and Correct Tree Errors

The goal now is to convert a given imperfect tree structure, as shown in Fig. 1b, into a “correct”

tree as shown in Fig. 1a. This is done by editing the tree structure. The basic process for editing

a given set of raw tree data involves two phases:

1. Run the Tree Diagnostician to identify a set of possible tree defects.

2. Use various visualization tools in conjunction with a set of semi-automated and manual tree-

editing functions to correct the tree.

4.2.1 Tree Diagnostician

After the raw tree is extracted and displayed using any of the tools mentioned in Section 3.3, the

Tree Diagnostician identifies candidate tree defects, including broken branches, breaks between

separate (but possible false) trees, overly short end branches, and others from the raw extracted

central axes. An example of the Tree Diagnostician and its associated Defect List dialogue box is

shown in the lower right portion of Fig. 3.

The Tree Diagnostician identifies possible defects in a set of raw trees T1,T2, . . . , extracted

from input image I by performing simple distance and connectivity calculations on the 3D sites

13

and branches constituting the trees. We give the criteria for possible defects below (all bold-faced

defect names are adapted from the Tree Diagnostician example given in Figure 3):

Break: Two branches, b1 and b2, from any extracted tree are said to have a “break” between them

– i.e., the two branches actually might constitute a single connected branch — if any pair

of 3D sites belonging to the branches are within a preset minimum distance d1 from each other:

||vb1(l)− vb2(m)|| ≤ d1 (4)

where vb1(l) ∈ V(b1) and vb2(m) ∈ V(b2). The 3D sites considered in this calculation can

be restricted to beginning and terminating (“end”) branch sites (End2EndPt option in

Figure 3) or to combinations of end sites in one branch and/or interior sites in the other

(End2Interior or Int2Interior options in Figure 3).

Break2trees: Two trees, T1 = {V1, B1} and T2 = {V2, B2}, are said to have a break between

them — i.e., they actually might constitute one tree — if any pair of 3D sites belonging to

the trees are within a preset minimum distance d2 from each other:

||v1(l)− v2(m)|| ≤ d2 (5)

where v1(l) ∈ V1, v2(m) ∈ V2, l = 1, 2, . . . , K1, and m = 1, 2, . . . , K2. As above, restrictions

can be placed on which 3D sites are considered in this analysis.

EndBranch: A terminating branch b, which has no child branches, is deemed to be too short and

possibly an artifact if

L(b) ≤ d3 (6)

where

L(b) = Eb − 1

denotes the length of branch b and d3 signifies a minimum branch length.

Tree Size: A tree T = {V,B} contains branches having an insufficient total branch length:

∑

b∈B

L(b) ≤ d4 (7)

where d4 is a parameter specifying the minimum acceptable total length.

Close Bifurcation: If branch b2 is a child branch of b1 and b2 also spawns child branches, then it

is possible that the bifurcation points produced by branches b1 and b2 may be overly close.

This implies that a close — and possibly false — bifurcation exists. Close bifurcations can

be identified via the criterion:

||vb1(Eb1)− vb2(Eb2)|| ≤ d5 (8)

14

where d5 is a parameter. Such bifurcations occur, because image noise results in false branches

being formed. They also sometimes occur at junctions where trifurcations, or even higher

x-furcations, actually exist, but the necessary image-sampling process produces false bifurca-

tions. A false branch that produces a false bifurcation will cause all further generational labels

below the offending branch to be falsely labeled. Thus, it is vital to identify such locations.

For this paper as shown in Figure 3, we used the following parameter values for criteria (4-8):

d1 = 2, d2 = 5, d3 = 1, d4 = 1, d5 = 1.5. These values essentially correspond to the minimum

values that can define valid breaks, valid disconnected trees, etc. Using larger values would result

in the Tree Diagnostician flagging fewer potential defects.

In addition two additional possible defects related to the topology of the tree are identified

automatically by the Tree Diagnostician:

Loop: If any subset of 3D sites in a tree form a closed loop, then a constituent loop branch is

flagged. (The 2D Tree Map also flags all branches constituting a loop.)

x-furcation: A branch b ∈ T is flagged as creating a possibly false x-furcation if its terminating

site vb(Eb) spawns three or more child branches; i.e., for branches b1, b2, . . . , bm ∈ T, m ≥ 3,

vb1(1) = vb2(1) = . . . = vbm(1) = vb(Eb)

Generally, a branching anatomical tree is defined by a bifurcating structure; i.e., all parent branches

have only two child branches. Sometimes, trifurcations and higher-order x-furcations can be valid.

But image artifacts and undersampling can produce false higher-order branch points. Hence, x-

furcations are flagged.

4.2.2 Tree Editing

After identifying potential tree defects using the Tree Diagnostician, the user then considers each

candidate defect. When the user points to a defect on the defect list using the mouse, the system’s

global status (view state) changes to this location and all visualization tools are updated to reflect

this selection. The user can then apply various manual and semi-automatic tree-editing functions

to fix the defect. As defects are fixed, they are removed from the Tree Diagnostician’s Defect List

(see Figure 3). In addition, the quantitative representation can be updated as the defects are fixed.

At any time during a session, the user can save the case study and resume editing at another time.

The tree-editing functions include several means for breaking and deleted unwanted branches

and for creating new tree branches. For all functions, the user can employ any of the interaction

modes discussed in Section 3.3.1. The user can manually place 3D sites at location of interest

15

and then the sites are joined via B-spline analysis to form a new curved line segment. Figure

10 illustrates this capability. As another approach, the repair of a broken branch can be done

by using this manual method in conjunction with the 3D Bounding Box [20]. As a third option,

a semi-automatic function exists for creating new branches. Similar to Figure 10, the user first

interactively selects two endpoints for joining. Then, automatic Hermite interpolation is applied to

form a curved segment between the two points. Unlike B-spline analysis, a curve interpolated via

Hermite interpolation only depends on the two endpoints [44]. All of these functions are useful for

fixing broken branches and for joining separated trees.

Another manual tree-editing function involves the facility for breaking and then subsequently

deleting existing branches. Again using either the shooter or 3D cursor, the user selects 3D sites

on a branch, which are then deleted — this breaks the branch. The system can then delete the

remnants of the branch to complete the operation. This function is also useful for deleting unwanted

portions of a tree and for breaking loops. As shown in an example in the next section, it sometimes

becomes necessary to redefine the root of a tree. A facility exists for doing this interactively. The

user selects a desired branch to serve as the new root branch, and the currently active quantitative

description of the tree is recomputed to reflect this choice.

Doing purely interactive defect correction, however, can be tedious. Thus, various semi-

automatic tools are also available as invocable functions to speed up the refinement of a raw

tree. These functions include the following:

Branch deletion: Individual branches are selected and automatically deleted.

Prune selected branch and below: The user selects a tree branch. Then, the branch and all

of its connected ancestor branches are automatically pruned from the tree. For example, if

branch (3,2) is selected, then branches (4,3), (4,4), (5,5), (5,6), (5,7), (5,8), etc., are deleted.

Delete tree(s): A disconnected small artifact tree is selected and automatically deleted. Or all

trees except a selected tree are deleted.

Generation-based deletion: All branches below a prescribed generation number are deleted.

Prune short branches: All terminating branches shorter than a specified length L(b) are deleted.

Line-based and sphere-based elimination: Based on geometric criteria defined fully in the

central-axes analysis method of Kiraly et al. [42]: (1) line-based elimination — branch b1

connected to branch b2 is pruned if its length straddles the extent of b2 too closely; and (2)

sphere-based elimination — branch b1 is pruned if it intersects a maximally inscribable sphere

centered about the terminating site of another branch.

These functions are invoked by interacting with a global or local 3D Render tool.

16

The 2D Tree Map enables the pruning of undesired branches or subtrees by pointing to them.

Also, Figure 11 gives an example of correcting a tree loop using the 2D Tree Map and other tools.

In addition, a tree’s root branch can be redefined by pointing to a desired branch. After redefining

the root branch, all branch labels are recomputed to reflect the new order. Redefinition of the

root becomes necessary when two anatomically separate trees initially appear connected when they

should be considered separately (e.g., venous and arterial trees appear connected); after the two

trees are separated, at least one of them will need to have their true root branch defined.

FIGURES 10 and 11 here.

As edits are made, the Tree Analyzer gives an updated tree structure and associated quantitative

data. The user can decide to undo changes or keep changes. When changes are kept, the stored

tree structure is updated to reflect the corrections.

4.3 Stage 4: Compute Quantitative Tree Measurements

A quantitative profile can be computed at anytime after a tree description is generated (after Stage

2). Quantitative summaries at the generation, branch, and 3D site level are available. They can

be popped up as dialog boxes in the main Tree Analyzer GUI or saved as ASCII text files. The

Results section gives examples.

The quantitative measurements computed by the Tree Analyzer are the same as those pro-

posed by Wan et al. [10]. A few major differences are pointed out below. Paralleling Wan et al.,

the following definitions illustrate some of the quantitative data that can be derived from a tree

representation T:
cj,k kth cross-section of branch bj (one at each 3D site vbj (k))

L(bj) length of branch bj

µA(bj) average cross-sectional area (CSA) of branch bj

gi ith tree generation
N b(gi) number of branches in generation gi

µL(gi) average length of branches at generation gi

µA(gi) average CSA of of branches at generation gi

Other measurements, not discussed here, can also be computed related to surface area, diameter,

and volume [10, 23]. Wan based all measurements off of the segmentation Is. This tends to give

a conservative and less-precise structure for basing quantitative measurements. In our current

work, all values are derived from the more precise surface representation of a tree. Further, Wan

approximated branches as a sequence of connected line segments, each of length 1 voxel. Our

current effort imposes no such restriction on the spacing of 3D sites v. In addition 3D sites are

situated at sub-voxel spacing along curves defined by either a B-spline of Hermite polynomial.

17

5 RESULTS

This section presents a variety of results illustrating the effectiveness of various aspects of the Tree

Analyzer. Other results using the Tree Analyzer appear in [20,21,23,24].

Fig. 12 shows output for micro-CT image h61. The image depicts a cast of a mouse coronary

arterial tree, where the cast was attached to the lid of a jar using clay (the rendered mass at the

top of a rendering is the clay). Figure 12a displays the result using the previously proposed axial-

extraction method by Kiraly [42], while Figure 12b presents the corresponding result using Yu’s

centerline method. The clay situated at the top of the scan originally produced a mass of invalid

branches around the tree root after Stage 2 for both centerline methods. Thus, Figures 12a-b

actually depict the two trees after simple tree editing was performed in the vicinity of the root to

delete the mass of distracting branches. This editing required (1) breaking each valid tree from

the mass and (2) deleting the disconnected mass of branches. These simple operations required

approximately one minute of interaction to produce the results of Figures 12a-b. In both cases,

two valid disconnected trees were produced.

Using the Tree Diagnostician, no loops were found using Kiraly’s method, since the method

automatically breaks loops. But three loops existing in the segmentation were improperly broken

by the method, and an obvious branch was missing (Figure 12a). Tree editing on this result required

20 minutes of interaction, as the improperly broken loops greatly affected the raw tree. The Stage-2

result of Yu, on the other hand, resulted in a much better starting point for tree editing (Figures 12b

and 13a). Three loops were detected in this result. The tree editing time, which involved breaking

the loops and joining the two separate trees, required only 5 minutes. Note that no quantitative

information is available for the root-node region created for the final edited global tree, because of

the clay. This resulted in an ill-defined root region that produced many defects identified by the

Tree Diagnostician. We cut the tree in this region, as stated above, and then connected the two

“valid” sub-trees; this then gave a new root and generation-1 set of branches.

Quantitative measurements were computed for h61, before and after tree editing, as shown in

Figure 14. The tables show that the generational description for h61’s tree is far more sensible (and

correct!) after tree editing than before. To verify the correctness of these numbers, Figure 15 gives

a comparison of the measured branch lengths for h61 between ground-truth manual measurements

made by a skilled human operator (done using a microscope) [20] and by Kiraly’s method and Yu’s

centerline method (both after tree editing). Figure 15 shows that the Yu results have a better linear

regressive slope (0.9848 versus 0.9724) and a better R-squared value (0.9855 versus 0.9718). The

R-squared value, an indicator ranging from 0 to 1, reveals how closely the estimated results for the

linear regressive line correspond to the actual data. Even after we manually fixed the defects in

18

Kiraly’s raw result, the output is still more scattered due to the improper position of branch points,

as shown in Fig. 15. All h61 results indicate the importance of an effective Stage-2 automated

centerline analysis method. The remainder of the presented results use Yu’s centerline method.

FIGURES 12-15 here.

Figures 16-17 present results for a 3D image of a rat’s left circumflex arterial tree (lca 146),

first used in [10]. The figures present a comparison of the results produced by Wan’s 2002 system

to the current Tree Analyzer. The current system introduces three major improvements over the

earlier system: (1) the more robust adaptive FWHM SymRG is used for image segmentation,

which extracts more branches; (2) the improved centerline method of Yu is employed, which gives

smooth, better-centered branches; and (3) the new extensive Stage-3 tree-editing capabilities are

used. Interactive tree editing required 17 minutes to resolve 8 branch breaks, 7 short branches,

9 close x-furcations, and 6 loops. A comparison of the final quantitative results produced by the

Tree Analyzer and Wan’s system (Figure 17) reveals that the current system gives a more extensive

analysis that is plausible to a higher-generation index.

Figure 18a presents an example of applying the Tree Analyzer to a human 3D MDCT chest

image. All Stage-1 and Stage-2 automated processing operations discussed in Section 4.1 were

used for this example, with the exception that a segmentation method tailored for airway trees was

used [45]. After Stage-1 and Stage-2 analysis, two minutes of tree editing corrected 1 short branch,

1 loop, and 2 close bifurcations. The final tree contained one plausible trifurcation.

FIGURES 16-17 here.

Figure 18b depicts results, free of defects, for a micro-CT image of the rat-liver vasculature. This

example depicts a tree that nominally consists of 75 generations. Unlike the standard bifurcating

patterns of the airway tree and coronary vasculature, the liver’s vascular tree exhibits a mode-

3 branching pattern, as discussed by Zamir, in that a main trunk extends down the length of

the organ, and smaller branch generations are spawned off the trunk [46]. Thus, branches at high-

generation levels have more in common in terms of their quantitative and mechanical properties than

certain branches at their corresponding generation level. While the Tree Analyzer has considerable

capability for processing, visualizing, and editing such trees, further work is necessary to arrive at

a more proper and useful quantitative description for such an anatomical tree.

FIGURE 18 here.

6 DISCUSSION

The Tree Analyzer is a complex system containing a large variety of tools for general 3D automated

analysis, 3D visualization, data mining, and quantitative analysis. It is particularly suited to

19

analyzing images containing large branching anatomical trees. Our main focus has been aimed at

analyzing the vascular structure of organs imaged by a micro-CT scanner, but we have also applied

the Tree Analyzer to 3D MDCT images of the chest and airway tree. In the interactive part of the

system, we have introduced many functions that allow the user to efficiently diagnose and repair

various problems in raw extracted trees. The system also provides a series of interactive editing tools

that not only help solve problems, but also provide a more reliable tree structure. Semi-automatic

tools have also been devised to support the inadequacies of purely interactive methods. This makes

it possible to generate more trustworthy trees and associated quantitative measurements.

The capabilities of the system are extremely extensive and cannot all be described here. We

refer the reader to the references for further information [20–24]. Note that the Tree Analyzer

has considerable general capability that makes it potentially useful for other 3D medical imaging

problems. Further work can be done to apply the system to the separation of venous and arterial

trees [5]. In addition, effort can be made to propose more suitable representations for trees, such

as the liver’s vasculature, that do not abide by a standard bifurcating structure.

7 ACKNOWLEDGEMENTS

This work was partially supported by grants #EB000305, #CA074325 and #CA091534 from the

NIH. Early versions of some of this work were presented at the conferences [20, 21, 24]. We also

thank Mike Graham for generating the matching results for Figure 15 and Diane Eaker for providing

assistance with some of the micro-CT data.

References

[1] S. M. Jorgensen, O. Demirkaya, and E. L. Ritman, “Three dimensional imaging of vasculature and
parenchyma in intact rodent organs with x–ray micro–CT,” Am J. Physiol (Heart, Circ Physiol 44),
vol. 275, pp. H1103–H1114, 1998.

[2] A. Garcia-Sanz, A. Rodriguez-Barbero, M. D. Bentley, E. L. Ritman, and J. C. Romero, “Three-
dimensional microcomputed tomography of renal vasculature in rats,” Hypertension, vol. 31, no. Part
2, pp. 440–444, 1998.

[3] R. H. Johnson, H. Hu, S. T. Haworth, P. S. Cho, C. A. Dawson, and J. H. Linehan, “Feldkamp and
circle-and-line conebeam reconstruction for 3D micro-CT of vascular networks,” Physics in Medicine
and Biology, vol. 43, no. 4, pp. 929–940, 1998.

[4] S. Y. Wan, A. P. Kiraly, E. L. Ritman, and W. E. Higgins, “Extraction of the hepatic vasculature in
rats using 3D micro-CT images,” IEEE Transactions on Medical Imaging, vol. 19, no. 9, pp. 964–971,
Sept. 2000.

[5] M. Kretowski, Y. Rolland, J. Bezy-Wendling, and J.-L. Coatrieux, “Physiologically based modeling of
3-D vascular networks and CT scan angiography,” IEEE Transactions on Medical Imaging, vol. 22, no.
2, pp. 248–257, Feb. 2003.

[6] W. Kalender, Computed Tomography: Fundamentals, System Technology, Image Quality, Applications,
Publicis MCD Verlag, Munich, 2000.

20

[7] N. C. Dalrymple, S. R. Prasad, M. W. Freckleton, and K. N. Chintapalli, “Introduction to the language
of three-dimensional imaging with multidetector CT,” Radiographics, vol. 25, no. 5, pp. 1409–1428,
Sept.-Oct. 2005.

[8] F. K. H. Quek and C. Kirbas, “Vessel extraction in medical images by wave-propagation and traceback,”
IEEE Transactions on Medical Imaging, vol. 20, no. 2, pp. 117–131, Feb. 2001.

[9] D. Selle, P. Preim, A. Schenk, and H.-O. Peitgen, “Analysis of vasculature for liver surgical planning,”
IEEE Transactions on Medical Imaging, vol. 21, no. 11, pp. 1344–1357, Nov. 2002.

[10] S. Wan, E. Ritman, and W. Higgins, “Multi-generational analysis and visualization of the vascular tree
in 3D micro-CT images,” Computers in Biology and Medicine, vol. 32, no. 2, pp. 55–71, Feb 2002.

[11] E. A. Kazerooni, “High resolution CT of the lungs,” Am. J. Roentgenology, , no. 3, pp. 501–519, Sept.
2001.

[12] J. Williams and L. Wolff, “Analysis of the pulmonary vascular tree using differential geometry based
vector vields,” Computer Vision and Image Understanding, vol. 65, no. 2, pp. 226–236, Feb. 1997.

[13] C. C. Hanger, S. T. Haworth, R. A. Molthen, and C. A. Dawson, “Semi-automated skeletonization of
the pulmonary arterial tree in micro-CT images,” SPIE Medical Imaging 2001: Physiology and Funct.
from Multidim. Images, A. Clough and C. T. Chen, eds., vol. 4321, pp. 510–516, Feb. 18-20, 2001.

[14] L. Antiga, B. Ene-Iordache, and A. Remuzzi, “Computational geometry for patient-specific reconstruc-
tion and meshing of blood vessels from MR and CT angiography,” IEEE Transactions on Medical
Imaging, vol. 22, no. 5, pp. 674–684, May 2003.

[15] I. Volkau, W. Zheng, R. Baimouratov, A. Aziz, and W. L. Nowinski, “Geometric modeling of the human
normal cerebral arterial system,” IEEE Transactions on Medical Imaging, vol. 24, no. 4, pp. 529–539,
April 2005.

[16] R. H. Johnson, K. L. Karau, R. C. Molthen, , and C. A. Dawson, “Exploiting self–similarity of arterial
tree branches to reduce the complexity of analysis,” SPIE Medical Imaging 1999: Physiology and
Function from Multidimensional Images, vol. 3660, pp. 351–361, C. T. Chen and A. V. Clough (ed.),
1999.

[17] R. H. Johnson, K. L. Karau, R. C. Molthen, S. T. Haworth, and C. A. Dawson, “Micro-ct image-derived
metrics to quantify arterial wall distensibility reduction in a rat model of pulmonary hypertension,” in
Proceedings of SPIE Medical Imaging 2000: Physiology and Function from Multidimensional Images,
A. Clough and C.T Chen, eds., 2000, vol. 3978.

[18] K. L. Karau, R. C. Molthen, R. H. Johnson, A. H. Dhyani, S. T. Haworth, and C. A. Dawson, “Pul-
monary arterial remodeling revealed by microfocal X-ray tomography,” SPIE Medical Imaging 2001:
Physiology and Function from Multidimensional Images, vol. 4321, pp. 18–20, Feb. 2001.

[19] E. Bullitt, S. Aylward, K. Smith, S. Mukherji, M. Jiroutek, and K. Muller, “Symbolic description
of intracerebral vessels segmented from magnetic resonance angiograms and evaluation by comparison
with X-ray angiograms,” Medical Image Analysis, vol. 5, pp. 157–169, 2001.

[20] K. C. Yu, E. L. Ritman, and W. E. Higgins, “Toward reliable multi-generational analysis of anatomical
trees in 3D high-resolution CT images,” SPIE Medical Imaging 2003: Physiology and Function —
Methods, Systems, and Applications, vol. 5031, pp. 178–186, 2003.

[21] K.C. Yu, E. L. Ritman, and W. E. Higgins, “Graphical tools for accurate definition of 3D arterial
trees,” in SPIE Medical Imaging 2004: Physiology, Function, and Structure from Medical Images, A.
Amini and A. Manduca, eds., 2004, vol. 5369, pp. 485–495.

[22] K.C. Yu, E. L. Ritman, and W. E. Higgins, “3D model-based vasculature analysis using differential
geometry,” in IEEE Int. Symp. on Biomedical Imaging, Arlington, VA, 15-18 April 2004, pp. 177–180.

[23] K.C. Yu, Multi-Generational Analysis of Anatomical Trees in High-Resolution 3D Images, Ph.D. thesis,
The Pennsylvania State University, 2005.

21

[24] K. C. Yu, E. L. Ritman, and W. E. Higgins, “System for 3D visualization and data mining of large
vascular trees,” in SPIE Optics East 2005: Three-Dimensional TV, Video, and Display IV, B. Javadi,
F. Okano, and J. Son, Eds., 2005, vol. 6016, pp. 60160B–1 — 60160B–15.

[25] W. Schroeder, K. Martin, and B. Lorensen, The Visualization Toolkit, 2nd. Ed., Prentice Hall, Upper
Saddle River, New Jersey, 1998.

[26] R.S. Wright, Jr., and B. Lipchak, OpenGL Super Bible, 3rd. Ed., SAMS Publishing, 2005.

[27] A. J. Sherbondy, A. P. Kiraly, A. L. Austin, J. P. Helferty, S. Wan, J. Z. Turlington, E. A. Hoffman,
G. McLennan, and W. E. Higgins, “Virtual bronchoscopic system combining 3D CT and endoscopic
video,” SPIE Medical Imaging 2000: Physiology and Function from Multidimensional Images, vol. 3978,
pp. 104–116, A. Clough and C.T. Chen, eds., 2000.

[28] G Sundaramoorthy, J D Hoford, E A Hoffman, and W E Higgins, “IMPROMPTU: A system for
automatic 3D medical image analysis,” Comp Med Imaging and Graphics, vol. 19, no. 1, pp. 131–143,
Jan.-Feb. 1995.

[29] J. Han and M. Kamber, Data Mining: Concepts and Techniques, Morgan Kauffman, San Francisco,
2001.

[30] D. Keim, “Information visualization and visual data mining,” IEEE Trans. Visual. Comp. Graph., vol.
8, no. 1, pp. 1–8, Jan.-Mar. 2002.

[31] J.Z. Turlington and W.E. Higgins, “New techniques for efficient sliding thin-slab volume visualization,”
IEEE Transactions in Medical Imaging, vol. 20, no. 8, pp. 823–835, Aug. 2001.

[32] R. A. Robb and D. P. Hanson, “ANALYZE: A software system for biomedical image analysis,” in
Proc. of the First Conference on Visualization in Biomedial Computing, Atlanta, GA, May 1990, pp.
507–518.

[33] W E Higgins, R A Karwoski, W J T Spyra, and E L Ritman, “System for analyzing true three-
dimensional angiograms,” IEEE Transactions on Medical Imaging, vol. 15, no. 3, pp. 377–385, June
1996.

[34] K Ramaswamy and W E Higgins, “Interactive dynamic navigation for virtual endoscopy,” Computers
in Biology and Medicine, vol. 29, no. 5, pp. 303–331, Sept.-Oct. 1999.

[35] P. Rogalla, J. Van Scheltinga, and B. Hamm, Virtual Endoscopy and Related 3D Techniques, Springer-
Verlag, Berlin, 2002.

[36] R. A. Robb, Three-dimensional Biomedical Imaging: Principles and Practice, VCH Publishers, New
York, 1994.

[37] Chung Laung Liu, Elements of Discrete Mathematics, 2nd Ed., McGraw-Hill International Editions,
New York, 1985.

[38] I. Herman, G. Melancon, and M. S. Marshall, “Graph visualization and navigation in information
visualization: a survey,” IEEE Trans. Visualization Comp. Graphics, vol. 6, no. 1, pp. 24–43, Jan.-Mar.
2000.

[39] B. Duan and M. Zamir, “Pressure peaking in pulsatile flow through arterial tree structures,” Annals
of Biomedical Engineering, vol. 23, no. 6, pp. 794–803, 1995.

[40] J.S. Lee, “Digital image smoothing and the sigma filter,” Computer Vision, Graphics, and Image
Processing, vol. 24, no. 2, pp. 255–269, Nov. 1983.

[41] Shu-Yen Wan and William E. Higgins, “Symmetric region growing,” IEEE Transactions on Image
Processing, vol. 12, no. 9, pp. 1007–1015, Sep. 2003.

[42] A. P. Kiraly, J. P. Helferty, E. A. Hoffman, G. McLennan, and W. E. Higgins, “3D path planning for
virtual bronchoscopy,” IEEE Transactions on Medical Imaging, vol. 23, no. 11, pp. 1365–1379, Nov.
2004.

22

[43] R. A. Robb, AVW Reference Manual, Biomedial Imaging Resource, Mayo Foundation, Rochester, MN,
1995.

[44] D. Hearn and M. P. Baker, Computer Graphics with OpenGL, Pearson Prentice Hall, Upper Saddle
River, NJ, 3rd. edition, 2004.

[45] A. P. Kiraly, E. A. Hoffman, G. McLennan, W. E. Higgins, and J. M. Reinhardt, “3D human airway
segmentation for virtual bronchoscopy,” SPIE Medical Imaging 2002: Physiology and Funct. from
Multidim. Images, A. Clough and C. T. Chen, eds., vol. 4683, pp. 16–29, 2002.

[46] M. Zamir, “Optimality principles in arterial branching,” J. theor. Biol., pp. 227–251, 1976.

[47] S. T. Witt, C. H. Riedel, M. Goessl, M. S. Chmelik, and E. L. Ritman, “Point spread function
deconvolution in 3D micro-CT angiography for multiscale vascular tree separation,” SPIE Medical
Imaging 2003: Visualization, Image-Guided Procedures, and Display, vol. 5030, pp. 720–727, 2003.

[48] M. Graham and W.E. Higgins, “Globally optimal model-based matching of anatomical trees,” in SPIE
Medical Imaging 2006: Image Processing, J. M. Reinhardt and J. P. W. Pluim, Eds., 2006, vol. 6144,
pp. 373–388.

(a) (b)

4) branch break

and overly short

false branch

5) missed branch

1) spurious branches

and

false bifurcations
3) an implausible

loop

7) shortened branch

6) skewed axis

2) improperly centered

bifurcation

Figure 1: 2D Schematic figure illustrating the difficulties that can arise in defining the central axes
of a vascular tree depicted in a 3D image: (a) Ideal surface and central axes of tree; (b) typical
output of purely automated 3D image analysis, depicting a tree with various imperfections. In both
figures, the outer outline represents the tree’s surface, and the interior lines represent the tree’s
axial structure.

23

Figure 2: Four-stage approach for defining the quantitative structure of a 3D anatomical tree.

Figure 3: Example composite view of the Tree Analyzer. The depicted surface renderings are for
a tree extracted from micro-CT image h61, a 450×445×465 image of a rat coronary arterial tree
with spatial resolution ∆x = ∆y = ∆z = 20.13 µm (9.06mm × 8.96 mm × 9.36mm real volume
extent), reconstructed without applying deconvolution [47]. The small box in the lower right corner
of each 3D Render tool enables viewpoint control (rotation, translation, scaling). The lower portion
of this composite view depicts the case study, picker status, and the Tree Diagnostician. (Used by
courtesy of SPIE.)

24

Figure 4: Examples of visualization tools depicted on a second monitor for the same situation
as Figure 3. The top left view shows a 2D transverse slice, and the top right view is a coronal
maximum-intensity projection. The lower two views illustrate the bounding box feature. The lower
left view depicts a localized 3D surface rendering about a site and bounding box of interest; the
bounding box is the inscribed parallelepiped shown in the figure. Bounding box dimensions: top
center point = [204,81,296] and bottom center point = [197,99,339] determine the height; length
and width = 20 (all dimensions in terms of voxels). The picker is at location [209,90,309]. The
lower right view shows a corresponding depth-weighted maximum sagittal slab for data within the
bounding box (WL=217, WW = 752, slab thickness = 40, vision = 60, view at 7.5X magnification).

25

(a) (b) (c)

Figure 5: Example of the 3D shooter feature for selecting points in 3D space. The user points to a
location on a 3D Render view (a) — this defines a 2D line in 3D Space (b). The user then rotates
the rendering and points to a location on the previously defined 2D line — this specifies a 3D site,
as shown by the ball (c). The two lines (and mock cameras) on the view of part (c) indicate the
points of view taken during the two-step selection process.

Figure 6: Example of using the 3D cursor to select a 2D slice. Human MDCT chest image
h006 512 85 is considered (512×512×574 3D image, sampling intervals: ∆x = ∆y =0.724mm,
∆z =0.60mm): (a) 3D Render view with the three axes of the 3D cursor depicted (z axis is locked);
(b) 2D transverse (x-y plane) slice for indicated 3D cursor location (gray-scale window width [WW]
= -350 and window level [WL] =1600 for the depicted slice [lung window]).

26

(a) (b)

Figure 7: Examples of the 2D Tree Map for the tree extracted from h61: (a) Global 2D Tree Map
in average-diameter mode for the first four generations; (b) local 2D Tree Map in diameter and
length modes spawned from selected fourth-generation branch #53 in (a).

(a) (b) (c)

Figure 8: Sample segmentation results comparing SymRG [4,41] and adaptive FWHM SymRG for
image control2 (originally used in [4]; image of a single hepatic lobe of a rat liver, 400×400×375
image, voxel size = (21µm)3). (a) Coronal weighted-sum projection of original gray-scale data. (b)
Segmentation result using SymRG. (c) Segmentation result using adaptive FWHM SymRG.

27

(a) (b) (c) (d)

Figure 9: Stage-2 centerline analysis results for a complex junction in 3D image r216 psf020826
([rat liver micro-CT image] dimensions 620 × 500 × 1000 [real volume dimensions: 12.57mm ×
10.13mm × 20.27mm], ∆x = ∆y = ∆z = 20.27µm): (a) result produced by the tree tool in
Analyze/AVWTM [43];(b) Wan 3D-thinning-based approach [4,10]; (c) method of Kiraly et al. [42];
(d) 3D centerline method of Yu and Higgins [21,23].

(a) (b) (c)

Figure 10: Connecting a broken branch using manually defined 3D points: (a) a broken branch
showing a gap between two separated parts; (b) points placed manually by the user with the
picker in Intersection-Locator mode — thus, the selected points are situated along the center of the
segmented tree; (c) resulting connected axis after B-spline interpolation.

28

(a) (b)

(c) (d)

Figure 11: Fixing a 2D Tree Map section indicating a loop (h61): (a) local 2D Tree Map of a
loop involving branch generations 3-7, with involved branches depicted in yellow; (b) local 3D
rendering of (a), with loop indicated in green; (c) local 3D rendering after repairing the loop; (d)
corresponding new local 2D Tree Map about repaired region (only generations 3-6 now exist about
the region).

29

(a) (b) (c)

Figure 12: Tree analysis results for micro-CT scan h61. (a) Results after using Stage-2 centerline
method of Kiraly et al.; lower left black arrow indicates a missing branch, while the other three
black arrows point to incorrect branch regions resulting from improperly broken loops. (b) Results
after Stage-2 centerline method of Yu. (c) Results after Stage-3 tree editing on part (b); one correct
tree now exists. The extra mass rendered at the top of these figures represents the clay used to
mount the arterial tree cast on a jar lid.

(a)

(b)

Figure 13: 2D Tree Maps of h61. (a) Tree Map of Stage-2 centerline results for the major tree
depicted in the 3D rendering of Figure 12b before tree editing; arrows indicate loops (yellow labeled
branches). (b) Final tree map, showing one correct tree after joining the two main trees and
correcting other defects; this tree map corresponds to the rendering shown in Figure 12c; the
yellow rectangle area is the major tree of part (a) after editing and the arrow points to the tree
section that had two loops previously; the added portion to the right of the box arises from the
smaller tree joined during tree editing.

30

(a)

gi N b(gi) µL(gi) µA(gi)
0 1 4.92 340.51
1 2 110.63 213.83
2 4 54.64 106.63
3 7 87.07 69.29
4 12 59.79 45.49
5 14 41.01 39.98
6 16 32.09 35.16
7 12 25.06 21.41
8 7 18.39 16.35
9 8 15.01 11.15
10 4 10.36 18.64
11 6 8.00 6.96
12 2 16.6 12.11
13 2 17.37 11.43
14 - - -

(b)

gi N b(gi) µL(gi) µA(gi)
0 1 16.58 —
1 2 59.34 113.35
2 4 72.90 174.65
3 8 45.86 74.76
4 14 57.50 59.14
5 20 42.03 40.96
6 22 28.31 38.27
7 20 29.76 31.84
8 10 32.78 20.47
9 4 24.02 16.84
10 4 14.37 12.32
11 4 10.36 18.64
12 6 8.00 6.96
13 2 16.60 12.11
14 2 17.37 11.34

Figure 14: Quantitative measurements for h61. (a) Results for the major tree before tree editing,
corresponding to the major tree in Figure 12b and the tree map in Figure 13a. (b) Results for
the complete tree after tree editing (two trees joined), per Figures 12c and 13b. “-” means a
measurement can’t be made; e.g., the final tree’s root branch is not a real branch. Units for µL(gi):
voxels; for µA(gi): (voxels)2.

Figure 15: Comparison of h61 measured branch lengths for Kiraly versus Yu. Y axis represents
Kiraly’s and Yu’s measurements in mm. The X axis represents the ground-truth branch lengths
in mm. Diamonds are Yu’s measurements and ground-truth correspondences. Squares indicate
Kiraly’s measurements and corresponding ground-truth measurements. The solid line is the linear
regression line of Yu’s measurements (y = 0.9848x + 0.0821), while the dotted line is the regres-
sion line of Kiraly’s meausrements (y = 0.9724x + 0.0923). The matching branches between two
techniques were found via a tree-matching algorithm [48].

31

(a) (b)

Figure 16: 3D renderings of trees produced for 3D micro-CT image lca 146 (401×267×490 image;
voxel size = 20.8µm3): (a) Via methods of Wan [10]; many missing branches are apparent from
comparing the rendering and centerlines. (b) Tree Analyzer results using Yu’s centerline method;
a false attachment is edited out in this case.

(a) Wan [10]
gi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N b(i) 1 2 4 6 6 2 2 4 4 2 4 6 2 2 2 - - -

(b) Tree Analyzer
gi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N b(i) 1 2 4 4 8 12 14 14 16 8 10 12 8 6 8 4 4 2

Figure 17: Quantitative results for lca 146, based on final trees depicted in Figure 16. The table
depicts the number of generations and branches per generation extracted by the two approaches.
A “-” means that no branches were extracted at generation gi.

32

(a) (b)

Figure 18: Final Tree Analyzer results for two other cases: (a) human MDCT image h006 512 85
used in Figure 6; (b) r216 psf020826 considered in Figure 9.

33

SUMMARY

Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D digital

images of various anatomical trees, such as the coronary or hepatic vasculature and the airway

tree. The sheer size and complexity of these trees make it essentially impossible to define them

interactively, and the analysis and subsequent visualization of such images poses a considerable

challenge. For example, a typical 3D micro-CT image can consist of several hundred megabytes of

image data, with a voxel resolution on the order of twenty microns containing a tree having ten

or more generations. Automatic approaches have been proposed for a few specific problems, but

none of these approaches can guarantee extracting geometrically accurate multi-generational tree

structures. This paper proposes a system for defining and visualizing large anatomical trees and

then performing subsequent quantitative data mining of the extracted tree.

The system, dubbed the Tree Analyzer, processes an image in four major stages. In the first

two stages, a series of automated 3D image-processing operations are applied to an input 3D digital

image to produce a raw anatomical tree and several supplemental data structures describing the

tree (central-axis structure, surface rendering polygonal data, quantitative description of all tree

branches). Next, the human interacts with the system to visualize and correct potential defects

in the extracted raw tree. A series of sophisticated 3D editing tools and automated operations

are available for this step. Finally, the corrected tree can be visualized and manipulated for data

mining, using a large number of graphics-based rendering tools, such as 3D global and local surface

rendering, stereo viewing, sliding-thin slabs, multiplanar reformatted views, projection images, and

a novel interactive tree map. The tree map, based a 2D directed graph representation, particularly

offers many novel capabilities for interacting with and editing a complex 3D tree. Quantitative

data can also be perused for the tree.

Results are presented for 3D micro-CT and human MDCT images. A quantitative comparison

to human ground truth reveals the efficacy of the system. The total processing time for both the

automated operations and subsequent interactive editing operations typically are done in less than

15 minutes for a typical 3D image.

34

