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ABSTRACT

This paper describes a new airway segmentation algorithm that improves the speed of morphological-based segmen-
tation approaches. Airway segmentation methods based on morphological operators suffer from the indiscriminant
application of all operators to a large area. Using the results of three-dimensional (3D) region growing, the discrete
application of larger operators is possible. This change can greatly decrease the execution time of the algorithm.
This hybrid approach typically runs 5 to 10 times faster than the original algorithm. 3D adaptive region growing,
morphological segmentation, and the hybrid approach are then compared via data obtained from human volunteers
using a Marconi MX8000 scanner with the lungs held at 85% TLC. Results show that filtering improves robust-
ness of these techniques. The hybrid approach allows for the practical use of morphological operators to create a
clinically useful segmentation. We also demonstrate the method’s utility for peripheral nodule analysis in a human
case.

Keywords: pulmonary, X-ray CT, airways, segmentation, virtual bronchoscopy, virtual endoscopy, peripheral
nodules

1. INTRODUCTION

New multidetector helical CT scanners can produce three-dimensional (3D) volumetric images of the human airway
tree consisting of hundreds of two-dimensional (2D) sections.! A typical 3D image can consist of 400 512 x 512
0.6 mm sections. Such images provide an excellent basis for virtual bronchoscopy (VB) applications> 1! and for
general airway analysis.!?71314 These applications require segmentation of the airway tree before further analysis
can continue. Manual interactive segmentation has been applied in some cases, but routine manual analysis is
impractical for the large 3D images arising from the new scanners.!®16 A variety of semi-automatic airway
segmentation techniques have been proposed, but none have been conclusively proven to be adequate for very large
high-resolution 3D CT chest images.!718:19,3,19-24,16,14

We present a new method for 3D airway segmentation that combines region growing and mathematical morphol-
ogy operations. This hybrid method gives results equivalent to a previously proposed morphology-only approach,'®
but greatly reduces the computer execution time. An important part of this paper is a comparison study of the
method against two other competing 3D airway-tree segmentation methods. This study reveals that mild image fil-
tering can greatly increase the robustness of the methods in the case of patient breathing artifacts, stent distortion,
and partial volume artifacts. We finally illustrate the utility of 3D airway segmentation to a VB-assisted medi-
astinal lymph-node biopsy. The remainder of this section reviews the airway segmentation problem and previously
proposed segmentation methods.

A 3D CT image of the chest, I, is comprised of a stack of Zg;.. contiguous slices. Each slice consists of
Xsize X Yigize voxels (typically 512 x 512). Each voxel (z,y, z) has intensity value I(x,y, z) and spacing (Az, Ay,
Az). The human airway tree as depicted in a 3D image consists of a set of connected, dark, branching tubular
structures that tend to decrease in diameter as the branching progresses. CT images are reasonably well calibrated
such that air is at about -1000 Hounsfield Units (HU) (i.e., I(z,y, 2) = -1000 for a pure air voxel (z,y, z)) while
water is at 0 HU.'> Soft tissues, such as those in the mediastinum, are situated in the range of -100 HU to 200
HU, and bone appears at +1000 HU.?®

Airway-tree segmentation is a challenging problem for several reasons. While airway voxels are generally near
-1000 HU, noise and partial volume effects make it impossible to use a simple threshold to identify all airway voxels
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within an image.?® Whenever mixtures of different tissue types comprise a voxel, intermediate gray-level values

result.?” Voxels straddling air and airway walls typically have values well above -1000 HU. Resolving these partial
voxels into tissues components can be done through statistical methods.?” 3%  Also, due to the size of the voxel,
thin or stenosed airways can appear broken or discontinuous. Finally, image reconstruction artifacts, such as using
a sharp high-frequency kernel, can result discontinuous-appearing airways.?® Such discontinuities can result in
parenchymal leakage and over segmentation.

Previously proposed airway segmentation methods have employed four strategies:

1. Knowledge-based techniques!”-1%:31

2. Region growing!®19:3,24

3. Central-axis analysis?!>!4

4. Mathematical morphology??-22:23:16

The technique proposed by Sonka et al. uses an anatomic knowledge base describing structural relationships
between airways and neighboring pulmonary vessels.'”-!5 Initially, 3D seeded region growing is used to identify
large airways. The knowledge-based rules are applied to the image on a slice-by-slice basis. This process results
in three types of trees having varying levels of false-positive regions. A fuzzy logic approach was later added by
Park et al. to improve specificity.?® The method was not tested on human data. More robust (less knowledge
dependent) methods exist.

Region growing methods depend on thresholds to continually grow from a seed point and connect voxels, usually
through 26 connectivity.>!%18:24 Summers et al. use 3D seeded region growing and a manually selected threshold
to segment airways for rendering.? The algorithm proposed by Mori et al. uses an adaptive 3D region growing
algorithm that automatically determines a threshold through repeated segmentations.'” Wood et al. also employ
26-connected region growing in conjunction with a global threshold as a basis for airway segmentation.!® Heng
uses adaptive 3D region growing, but adds a genetic algorithm to automatically identify the center of the trachea.?*
Although 3D region growing is efficient, it suffers from partial volume effects and noise due to the global threshold
used during segmentation. “Optimal” thresholds differ for large versus small airways because of these factors. The
resultant segmentation tends to lack finer details of the airways and contains rough edges. All of these similar
methods can either lose details, depict incomplete structures, or suffer from parenchymal leakage (“explosion”) to
varying degrees.

Segmentation algorithms based on central axis analysis depend on central axis estimates in order to compute
the segmentation.?’'* The segmentation technique proposed by Swift et al. performs a central axis computation
as a basis for airway segmentation.?’'* The axis computation begins with a manually selected root site. The
surface of an ellipsoid positioned at this site is then sampled to determine more sites or to detect the end of a
branch. The properties of the site determine the size of this ellipsoid. This process is then repeated for each newly
found site. Further processing produces a complete central axis tree. Bronchial walls are then detected for each site
of this tree via thresholding. Finally, the unified results of this process determine the segmented airway tree. The
disadvantage to this method is the critical dependence on the central axis analysis results, which may be imperfect
or fail for several reasons. Concerns include complex dependencies of initial parameters and stopping criteria, and
the possibility of forming paths outside of the airways.

The field of mathematical morphology involves image-processing operations that focus on shape and gray-scale
properties.?>33  Airway segmentation methods drawing upon mathematical morphology tend to have two or more
processing phases.!6:20:22:23  First, candidate airways are detected using various morphological operations. Next,
3D relationships and shape characteristics help determine the true airways from false candidates. Bilgen et al.
proposed an algorithm based on binary and gray-scale morphological operations.!® 2D operators of varying sizes
are applied to each slice of the image to identify candidate airways. Next, false candidates are eliminated by
3D reconstruction. Pisupati et al. proposed a similar technique that uses the same principles to detect both
pulmonary arteries and veins.?® Preteux et al. use a method based on a combination of morphological filtering,
connection cost-based marking, and conditional watershed techniques to segment the bronchi of sheep lungs.??
3D tree reconstruction was not considered since the primary focus was 2D airways detection. Extending this
work to 3D airway segmentation and reconstruction, Fetita et al. have proposed methods that use more complex
morphological operations in addition to fractal analysis of candidate regions.?? An updated selective marking and



depth-constrained connection cost operator is used to identify possible airways. Valid candidates are identified
by a 3D reconstruction procedure involving model-based aggregation and fractal analysis. While these methods
are promising, computation time tends to be inordinate, particularly for real clinical scenarios. Variations in the
properties of the morphological operators directly affect the candidates determined. In addition, the reconstruction
process, once candidates are defined, can be complex and unestablished. Further, they have received little or no
testing on large high-resolution 3D CT chest volumes.

We present a method that combines the concepts of adaptive 3D region growing and mathematical morphology
to give a fast, robust method for 3D airway tree segmentation from very large 3D CT chest images. The remainder
of the paper is organized as follows. Section 2 presents the airway segmentation method. Section 3 discusses
filtering and the results on human CT data in comparison to other known methods. Section 3 also discusses the
utility for human VB analysis for bronchoscopic planning of peripheral nodule biopsy. Finally, Section 4 offers
some concluding remarks.

2. METHODS

This section describes the hybrid segmentation algorithm presented by this paper along with the algorithms com-
prising its basis. The hybrid algorithm will first be detailed followed by its modified components algorithms. These
component algorithms are comprised of lung region definition, adaptive 3D region growing, and morphological
based segmentation methods. Figure 1 shows how these component algorithms comprise the hybrid algorithm.

2.1. Hybrid Lung Segmentation Algorithm

A diagram of the hybrid algorithm is shown in Figure 1. The necessary inputs are the 3D CT image of the chest
and the location of the proximal end of the trachea, the root site. The final output is the segmented image of the
airways, Is.

The original image and root site are used throughout the method in computing this final output. The goal
of the method is to provide the same quality of segmentation as an existing technique,'® but with an order of
magnitude reduction in computation time. This speedup is achieved by utilizing a modified version of the adaptive
region growing method introduced in [19] as well as by lung region definition. More specifically, we identify the
locations of larger airways using a modified 3D region growing algorithm. Computationally expensive morphological
operators for large airways are then applied only to these identified regions. Areas of the lungs are masked using
lung region definition. Operators for smaller airways are applied in the restricted region encompassing only this
area. These operators are characterized by their integer size, b. Several other segmentation approaches make use
of morphological operations followed by reconstruction.2:22:22  These approaches can be made more efficient as
well with the method introduced. The following paragraphs detail the steps shown in Figure 1.

Lung region definition creates a 3D mask of the data that defines the subvolume of the image containing the
lungs. Once the lung region is segmented, the maximum bounding 3D parallelopiped of the segmentation, Wy, is
used as a mask for smaller morphological operators, b = 1,...,s. Subsection 2.4 describes how these operators of
smaller sizes are applied on a slice by slice basis.

Adaptive 3D region growing uses an optional filter along with a manually supplied “explosion” parameter, F,
to provide a segmentation of the airways, Ir. The E parameter simply ensures an acceptable volume is segmented.
This segmentation is used to provide a set of more refined masks for each slice of the image, W}, i = 1,..., Zsi.c.
These masks are then used by the remaining larger operators, b = s + 1,..., M. Although adaptive 3D region
growing is fast, the segmentation does not always capture finer details on the order of one or two voxels in
diameter. The resultant segmentation does, however, give an excellent estimate of the location of larger airways.
The computation time of this segmentation is insignificant in comparison to any method employing morphological
operations. In summary, 3D region growing is used to create a rough segmented volume of the airways, Ir. For
each slice ¢ € Ir, a maximum bounding 2D region encompassing the segmented airways, W}é, is determined. Each
window is then dilated by the radius of the largest operator to ensure proper detection of large airways on the
boundaries.

Once the masks, W, and Wg, are computed, the reconstruction proceeds using the gray scale reconstruction
method described in Subsection 2.4. However, the operators are only applied to the regions dictated by these
masks.

The hybrid airway segmentation algorithm requires four parameters: 1. E, the explosion parameter for adaptive
3D region growing; 2. s, the maximal operator size considered to be “small”’; 3. M, the maximal operator size
for morphological operations; 4. Thorpm, the preset threshold used by the morphological operator segmentation
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Figure 1. Block diagram of the hybrid airway segmentation algorithm. Lung segmentation and airway segmen-
tation are first performed to produce the regions W and Wy, respectively. These regions are used to limit the
computation time spent by morphological operators in the morphological algorithm.

method. The details of the lung region definition and the adaptive 3D region growing methods along with the
morphological approach are found below.

2.2. Lung Region Definition

A partial version of the lung segmentation method by Hu et al. is used to identify the lung region.?* In [34] lung
segmentation is performed in three steps to produce separated left and right lungs with smooth boundaries. We
used only a portion of the first step since the results of interest need not be precise and are limited to a bounding
region for the lungs.

Lung region definition begins with the determination of a threshold to use for region growing at the root site.
This threshold is large enough such that the region growing encompasses the entire lungs. The initial threshold,
To, is set to -1000 HU. An iterative procedure then determines the final threshold. The segmentation threshold at
step ¢, T, is used to separate the entire image into voxels greater than 7; and those less than or equal to T;. The

new threshold, T}, is set to

H1E T

where pp and i, represents the mean gray-level of the voxels greater than T; and that of all other voxels, respectively.
This procedure is repeated until the condition T; = T;4; is met. This threshold is then used for 3D region growing
at the root site to define the lung region. 3D region growing is also part of adaptive 3D region growing and is
described in the next subsection.

2.3. Adaptive Region Growing
Regions of the image containing larger airways are identified by a robust adaptive 3D region growing method. We
increased the robustness of the method in [19] to provide good results for a wide variety of images. The following
section first describes adaptive 3D region growing and then describes the modifications made to add robustness.

3D region growing uses a threshold T' and a root site (x,,y,, 2,) to determine which voxels are added to the
segmentation. An optimal T is found by repeating 3D region growing with increasing values of T' (adaptive 3D
region growing). It is assumed that the threshold eventually reaches a point where it is high enough such that
the region growing breaks through the bronchial wall and enters the parenchyma. Since the total volume V of
the segmentation is computed each time 3D region growing is performed, this event can be detected by a sharp
increase in the volume. The sharp increase is termed an “explosion,” and is determined by a preset value called
the “explosion parameter,” E, that is set to a value below the volume of the explosion. The following paragraphs
detail this method.

Let I be the original grayscale image, and let Ig(z,y,2) =0, V(z,y,z) € Ig. Ig will contain the output of
the 3D region growing segmentation. Let Nog(x,y, z) be the 26-connected neighborhood of the voxel (z,y, z). 3D
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Figure 2. Block diagram of the steps performed in adaptive 3D region growing. The seed s is set to the root site
(Zr,Yr,2zr). An optimal threshold is determined as the maximum T that results in a segmentation of acceptable
volume. After the optimal threshold 7' is determined, a final region growing is performed at this threshold.

region growing assumes a threshold 7. Given the root site, (z,,y.,2.), each neighbor (z,y,2) € Nag(z:, Yr, 2r)
such that I(z,y,2) < T and Ig(z,y,z) # 1 is added to the segmentation, i.e., we set Ir(z,y,2) = 1. As each voxel
is added, its neighbors are then also processed in this fashion. This is repeated until no new voxels are added to
Igr. Then, the volume V' of this segmentation is computed. The following outlines how repeated 3D region growing
operations determine an optimal threshold.

1. Initialize threshold to 7" = —1000 HU.
2. Perform 3D region growing with root site (z,,y, 2-) and threshold T.
3. Calculate the volume of region growing, V, from step 2, i.e.
Vi=0x x 6y X 62 X (Xy(s,y.2)ern [R(T,Y,2)).
4. If V < E repeat step 2 with T'=T + 1, otherwise continue to step 5.
5. Decrease the threshold, T'=T — 1. Perform final 3D region growing with this value.

A block diagram of these steps is shown in Figure 2.

There are two modifications we made to adaptive 3D region growing to increase robustness. The first modifi-
cation is applied to the output segmentation. The final output of 3D region growing is unacceptable in most cases
because of cavities in the segmentation due to noise in the original image. Additionally, the region boundaries in
the final segmentation are often rough. Solutions to these problems are provided by applying a 2D cavity filling
and a 2D binary closing by a 4-connected neighborhood operator to each slice of I.?3

The second modification is the pre-filtering of the data. This option is manually applied on a case-by-case basis.
Pre-filtering is necessary when even the minimal initial threshold creates an explosion into the parenchyma. This
problem is solved by applying a 2D median filter to each slice.??> Two different mask sizes are used depending on
the severity of the explosion. The first mask is a 4-connected neighborhood and the second is a 3 x 3 mask. The
effects of these filters on region growing are described in the Section 3.

2.4. Morphology-Based Segmentation
In the hybrid method, a modified form of the morphological segmentation method proposed by Bilgen et al.
accounts for most of the processing.'® The method of Bilgen et al. consists of two steps. First, 2D morphological



Figure 3. These images are an example of a 4-connected neighborhood operator and a 3 x 3 operator, respectively.

operations are performed to determine candidate airway locations. This step uses gray-scale reconstruction followed
by thresholding applied to each slice. Next, 3D reconstruction is performed to recover the airway tree from these
candidate locations. These steps are depicted in Figure 1. The result is a binary segmented volume of the airways,
Is.

Candidate airway locations are determined on a 2D basis via gray-scale reconstruction followed by thresholding.
The basis operator for the reconstruction is given by a binary 4-connected neighborhood, By, the smallest element
used in the process. Figure 3 contains a drawing of this operator. Larger elements are computed by repeated
dilations of By as follows:

Bj=bB;=By®&By&...& By, (1)

(b—1) dilations

where bB, is the bt"-order homothetic of By.
An operator B} is applied to each individual slice as described below. Given the original image I, each slice
z=1,--+, Zgize of I is windowed (-1000,0) to a 2D image S,

_ | I(z,y,2) if I(z,y,2) <0
S(ay) = { 0 otherwise

Windowing is used to eliminate the effect of variations in more dense structures such as bone. A marker image for
gray-scale reconstruction, .J;, is then obtained from the gray-scale closing of S with structuring element BY,

J'=SeBl=(S® B c B 2)

Hence, J? is computed from the gray-scale dilation by B} followed by an erosion by the same operator. Next, J&
is computed from J? by the following,
Jp,1 = max(J} © By, S), (3)

where max(.,.) computes the voxel-by-voxel gray-level maximum. Equation (3) is repeated until no further changes
occur; i.e.,

I (z,y) = Jby (z,y) = Jb(z,y), V(z,y) € J}, (4)

where JY represents the final gray-scale reconstructed image with structuring element BS. In this image, local
minima smaller than BY in S are filled in with a gray-level value that is proportional to the difference between the
maximum and minimum gray-levels computed within a BY-sized neighborhood of the minima.

A gray-scale difference image is then computed between J’ and S, and then thresholded,

b _ 1, ifJi(z,y) — S > Tumorra
C(,y) = { 0, otherwise

The difference image is bright where local minima exist in the image S. We use a value of 20% of the difference

between the maximum and minimum possible values for the parameter Th;orpr. In this case, since the data was

windowed between 0 and -1000, the threshold value is 200. C? is a binary slice of potential airways identified by
b

operator Bj.



In order to identify airways of various sizes, the above process is repeated for each element B, b=1,2,..., M,
where B/ is the maximum sized operator. The union of these series of images is taken to form the final output C
for the slice z,

M
Clx,y) = C(=,y). (5)
b=1

This segmented slice C contains all potential airways acquired through all of the operators. C is then inserted into
Is to define candidate airway locations for slice z,

IS(x;yvz) = C(ilf,y), V(x,y) €C. (6)

This process is repeated for each slice z of I.

Once the candidate airway locations are in Ig, the 3D airway is reconstructed using a closed space dilation with
a unit kernel radius as in [16]. 3D region growing with 6-connectivity, rooted at the trachea, is used in this process.
This results in the removal of most false candidates, leaving only the airways in Ig.

Segmentation methods using morphological operations can be computationally expensive. In [16], operators of
various sizes are used to detect airways of corresponding sizes. However, these costly operators need not be applied
to the entire image, only the approximate location of the airways, since they have no theoretical relevance to other
portions of the volume. The hybrid approach uses lung segmentation and adaptive 3D region growing to create
masks that greatly constrain the volume where these costly operators are applied.

3. RESULTS

First we discuss the effect of filtering on the robustness of airway segmentation. Next, the performance of the
presented algorithm in comparison to two other segmentation algorithms is tested with three 3D CT images.
Finally, the utility of the segmentation is demonstrated for human virtual bronchoscopic analysis for a peripheral
nodule case.

Three segmentation algorithms were tested and compared: (1) robust adaptive 3D region growing; (2) gray-
scale morphological; and (3) hybrid method. 3D CT images obtained from a Philips MX8000 scanner were used in
the comparison. The subjects were studied with the University of Iowa IRB approval. The scanning parameters
included: 120 kVp, 100 mAs with a multislice pitch of 5 (equivalent to a single pitch of 1.25), 0.5 sec rotation time,
0.6 mm table increment, 180 degrees scan angle, and 1.3 mm slice thickness. An ultra-fast resolution setting with
a D filter and a 512 Matrix with a typical field of view of 300-340 mm were used.

The explosion parameter, E, was the only parameter that needed adjustment on a case-by-case basis. We found
that settings between 45000 mm? and 65000 mm? provided acceptable results. The largest operator classified as
small, s, is determined by the smallest size airway 3D region growing can continually segment. A value of 3 was
used for s since airways with cross sections larger than B3 are hardly influenced by partial volume effects. M,
the maximal sized operator is determined from the largest airway in the image. We found that setting M = 18
adequately captures all of the airways in our data sets. The following details the effects of filtering on the three
algorithms and compares their resultant segmentations.

Filtering the image before segmenting increases the robustness of the algorithms by helping to eliminate voxels
of low HU value connecting the airways to the parenchyma. The filtering effects are observed for each of the three
algorithms. In some cases, filtering is necessary for successful segmentation.

Figure 4 shows a comparison of the maximum intensity projection, MIP, of the three segmentation algorithms
as filtering is added. The filtering has very predictable effects on the region growing segmentation. Looking at the
column occupied by the region growing method, as the filtering is increased, there are two noticeable effects. The
first effect is a successful segmentation. The second effect is negative in that smaller branches are eliminated in the
process. These results are typical for the region growing algorithm.

The hybrid and morphological methods do not respond as predictably to filtering. This behavior is due to the
more complex two step process used in computing the segmentation. Filtering has a less predictable effect on the
morphological operations, but can still result in improvements in some cases. As shown in Figure 4, the hybrid
method improves with filtering. However, the original morphology method identifies additional, non-airway areas
when filtering is applied.

In summary, filtering increases the robustness of these algorithms, but comes at a cost of losing smaller branches
or identifying additional non-airway structures. Several of the images could not be segmented during the region
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Figure 4. The maximum intensity projection image of different segmentations is shown. The results of three
different segmentation algorithms are shown in the columns, while different levels of filters are shown in the rows.
Filtering the image before processing increases the robustness of the segmentation methods. However, filtering does
remove smaller branches or identifies non-airway regions depending upon the algorithm used.

growing phase of the hybrid algorithm. In all of these cases, the problem was solved by applying a median filter to
the image before performing 3D region growing. The 4-connected neighborhood median filter eliminates the finer
branches while the 3 x 3 median filter eliminates even thicker branches. Without this pre-filtering, however, the
3D seeded region growing is unable to segment the airways.

Adaptive 3D region growing, morphological reconstruction, and the hybrid method are compared using the
data sets described above. In the following comparisons, two main factors are analyzed, robustness and execution
time.Robustness was determined by the capability of the method of completing a visually acceptable segmentation.
Execution times excluded image load/save times. Further work will assess these properties more conclusively.
Computation times were determined on a 933 Mhz dual-CPU Xeon PIIT PC with 2 GB of memory. The final
segmented output is currently used in a path planning algorithm to provide smooth navigational paths through
the airways

Figures 5, 7, and 8 show the maximum intensity projection (MIP) views of the segmented airways using the
three methods. Figure 6 shows the surface rendering of an airway that was computed using the segmentation in
the center of Figure 5. Table 1 lists the corresponding timing results for the three different images.

In Figure 5 filtering was not used in any method. The 3D region growing and hybrid methods show similar
results. Both methods missed airways recovered by the other. The region growing method experienced a minor
explosion in the segmentation. Filtering or lowering the explosion parameter can solve this flaw. However, since
the volume of the explosion is small, it would be difficult to determine the proper setting based on the volume
increments. The morphological method required approximately 12 times the computation time to perform labeling
and failed. The fact that large operators are not applied to the entire image prevented the hybrid method from
failing as did the morphological method. Figure 6 displays a surface shaded view of the same airway tree.



Figure 5. Maximum intensity projections of three different segmentation algorithms for a 512 x 512 x 574 CT
image of the chest. The voxel spacing is Az = Ay = 0.724609 mm, Az = 0.599976 mm and the image size is 287
MB. The left image is the result of adaptive 3D region growing. The center image displays the results of the hybrid
algorithm. Finally, the right image is from the standard morphological algorithm. All three images were computed
without filtering.

Figure 6. Surface rendering of an airway tree. The segmented image, shown in Figure 5, was used to mask
the original gray-scale data. The marching cubes algorithm with a threshold of -600 HU was then applied to the
masked gray-scale data to create this surface. This method provides good results for external renderings.

A 4-connected median filter was used for all three methods in Figure 7. All three displayed comparable seg-
mentation quality, but the hybrid method showed no “explosion” artifacts. The labeling time was over 13 times
faster for the hybrid method.

Figure 8 displays the third dataset run by the three methods without filtering. The hybrid method was the only
successful one. Region growing failed due to a low gray-level voxel directly linking the airways to the parenchyma.
The mathematical morphology method failed due to larger structuring elements identifying candidates that even-
tually linked airways to the parenchyma. The increase in the labeling time speed was only about 5 times in this
case. The reason for this smaller difference is due to the explosion of the region growing method, causing the
identification of a larger area to apply larger operators. Filtering prevents failure in the other two methods.



Figure 7. Maximum intensity projections of three different segmentation algorithms for a 512 x 512 x 488 CT
image of the chest. The voxel spacing is Az = Ay = 0.654297 mm, Az = 0.599976 mm and the image size is 244
MB. The left image is the result of adaptive 3D region growing. The center image displays the results of the hybrid
algorithm. Finally, the right image is from the standard morphological algorithm. All three images were filtered
with a 2D 4-connected median filter.

Figure 8. Maximum intensity projections of three different segmentation algorithms for a 512 x 512 x 389 CT
image of the chest. The voxel spacing is Az = Ay = 0.585938 mm, Az = 0.599976 mm and the image size is 194
MB. The left image is the result of adaptive 3D region growing. The center image displays the results of the hybrid
algorithm. Finally, the right image is from the standard morphological algorithm (failed). All three images were
computed without filtering.



Image | Method | Labeling (sec)

Reconstruction (sec)

Total (sec) |

1 Adapt. 3D RG | N.A. N.A. 26

1 Hybrid 1740 2640 4380
1 Standard 21120 4740 25860
2 Adapt. 3D RG | N.A. N.A. 136

2 Hybrid 960 1020 1980
2 Standard 13200 1320 14520
3 Adapt. 3D RG | N.A. N.A. 31

3 Hybrid 2400 1080 3480
3 Standard 11820 3540 15360

Table 1. Timing comparisons among three different airway segmentation methods on three different 3D CT
images. Time is measured in seconds. Since labeling and reconstruction procedures are not part of adaptive 3D
region growing (3D RG), timing results are not applicable (N.A.) for this method. The hybrid method shows
approximately an order of magnitude improvement in time for the labeling process.

The hybrid method tends to be more robust than the original method or the region growing method when
filtering is not an option. Filtering increases the robustness of all three segmentation methods, but comes at the
cost of missing small branches. A more detailed validation study is in progress.

We have applied the segmentation methodology to over 20 human cases thus far, using an integrated virtual
bronchoscopy system.!%:3%:36:14  The system permits 3D CT image assessment and follow-on live guidance of
bronchoscopy. Reference [36] illustrates the system’s use for phantom studies, while reference [14] gives preliminary
efforts for 3D CT human image assessment.

Figures 9 and 10 illustrate the use of our segmentation methodology and the VB system for a peripheral nodule
case. The initial 3D CT image was made on a Marconi Mx8000 multidetector helical CT scanner. It consists of
414 512x512 slices. The slice thickness is 0.6 mm and the axial-plane resolution is 0.566 mm. Figure 9 illustrates
airway-tree segmentation results with and without filtering. After segmentation, we computed the centerline paths
for the segmented tree using an automated algorithm.?” Twelve generations of airway branches were extracted,
which include 182 branches and 93 paths (see [14] for a definition of a branch and a path); some of the paths toward
the periphery are false. The segmentation step took 2 minutes and 26 seconds, while the path analysis required 3
minutes 19 seconds. All processing was done on a Dell Inspiron 3800 laptop (700MHz CPU, 512 MBytes RAM).

Figure 10 gives a composite VB system view for the case. A peripheral nodule is clearly visible in the Coronal
Projection view in the right lung. We manually defined the nodule using the system’s built-in editing tools. We
then created a surface file using a custom surface-dilation procedure and a marching cubes algorithm built into the
VTK package.?® All tools clearly show the nodule, while the Endoluminal Renderer shows an interior view in the
right main bronchus. These data can be used conceivably for planning follow-on biopsy.

4. DISCUSSION
We have presented a method to significantly reduce the execution time of morphology-based segmentation algo-
rithms and applied this method to a specific algorithm. Existing segmentation algorithms used in the process were
modified to increase robustness through the use of filters. The presented method along with the two segmentation
algorithms comprising it were compared using human 3D CT data of the chest.

The results show that no single method is superior in all respects. The morphological method found different
airways missed by region growing and had good airway edge localization, but the total run time impractical for
clinical usage. Adaptive 3D region growing proves to be the fastest method in obtaining an airway segmentation,
but several airways can be missed and the lumen edge definition tends to be poor. The hybrid algorithm significantly
reduced the time required for segmentation, allowing practical usage. This method provides good edge localization
and produced results similar to the morphological method. The differences in the output between the hybrid and
morphological methods are mainly due to the reconstruction process. Since the morphological method identifies
more candidates with the larger operators, it is more likely to generate false candidates that create problems for
the reconstruction process. Again, the larger operators have no theoretical relevance in locations where there are



(a) No filtering. (b) star median filter used

Figure 9. Coronal maximum-intensity projection images of a segmented airway tree for a peripheral nodule human
3D CT scan. See text for image details. Part (a) employs region growing and no filtering [root site = (273,292,0);
explosion = 30000] — note the extraneous noisy extensions. Part (b) uses the same segmentation parameters as in
part (a), but employs a star median (5-point window, including the four-neighbors of the center point) — the view
is significantly cleaner.

no similarly sized airways.

Based on these results, adaptive 3D region growing is appropriate when a fast segmentation is needed for
path planning. The hybrid approach offers more in terms of having better edge localization at the cost of more
computation time. However, this time is under one hour.

Although it is a manual decision, the use of the median filter before segmentation increases the robustness of all
three algorithms. Adaptive region growing benefits the most from this option since the method is prone to having
the region growing leak into the parenchyma. This filter reduces the number of connections between airways and
the parenchyma.

The presented method is being used as part of a virtual bronchoscopy analysis system to guide path selection
and treatment planning.'® The ability to segment the airways offers a basis for variety of image analysis methods.
Path calculations, rendering, and quantitative analysis methods all rely on this segmentation for proper execution.
Peripheral nodule guidance is also performed with the segmentation results as a basis.
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