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Symmetric Region Growing
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Abstract—Of the many proposed image-segmentation methods,
region growing has been one of the most popular. Research on
region growing, however, has focused primarily on the design of
feature measures and on growing and merging criteria. Most of
these methods have an inherent dependence on the order in which
the points and regions are examined. This weakness implies that a
desired segmented result is sensitive to the selection of the initial
growing points. We define a set of theoretical criteria for a sub-
class of region-growing algorithms that are insensitive to the se-
lection of the initial growing points. This class of algorithms, re-
ferred to as Symmetric Region Growing, leads to a single-pass re-
gion-growing algorithm applicable to any dimensionality of im-
ages. Furthermore, they lead to region-growing algorithms that
are both memory- and computation-efficient. Results illustrate the
method’s efficiency and its application to 3-D medical image seg-
mentation.

Index Terms—Connected-components analysis, image segmen-
tation, region growing, region-based segmentation, three-dimen-
sional image analysis.

1. INTRODUCTION

F THE MANY image-segmentation methods, region
() growing has been one of the most popular [1]-[7].
Research in region-growing methods has focused on either 1)
the design of feature measures and growing/merging criteria
[31, [5]-[12] or 2) algorithm efficiency and accuracy [13]-[15].

Most of these methods, however, have an inherent depen-
dence on the order that points and regions are examined [1],
[3], [6]. This weakness implies that a segmented result is sen-
sitive to the selection of the initial growing points (or seeds).
This problem arises because the measured feature information
adaptively changes as the segmentation process progresses. For
example, most seeded region-growing processes only add a new
point to a region if its corresponding feature measures are sim-
ilar to those of an adjacent existing region; after this new point
is added to the region, the region’s feature measures change.
Therefore, different initial growing point assignments lead to
different values for evolving region information. Recent work,
while not a pure region-growing method, integrated edge extrac-
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tion and seeded region growing to intelligently determine initial
seeds and thus enhance segmentation accuracy [16], but this still
does not address the sensitivity of the segmentation method to
seed selection.

Region-growing methods are also often computation and
memory intensive. For example, the three-dimensional (3-D)
algorithms of [8], [10], [17] operate as if they are z-, y-,
z-inseparable (hence requiring significant computation) and
demand considerable memory.

We propose the concept of Symmetric Region Growing
(SymRG). Region-growing algorithms that abide by the the-
oretical criteria defining SymRG are insensitive to the initial
growing points and initial conditions set forth for segmentation.
Also, SymRG algorithms are both computation and memory
efficient. We emphasize that we do not propose a more ef-
fective image-segmentation process. Rather, our purpose is to
define the theoretical criteria necessary for defining a region
growing algorithm that is invariant to starting conditions and
that enables efficient algorithm implementation. Section II
lays out the theoretical development of SymRG. Section III
proposes a general SymRG algorithm applicable to any image
dimensionality. Section IV provides results illustrating the
computation and memory efficiency of SymRG and discusses
its application for 3-D medical image segmentation. Finally,
Section V offers concluding remarks.

II. THEORETICAL DEVELOPMENT

Subsection II-A defines the basic notation and problem state-
ment. Subsection II-B lays out the theoretical constraints for a
SymRG algorithm. Finally, Subsection II-C gives guidance on
how to devise a SymRG algorithm and motivates the general
N-dimensional SymRG algorithm described in Section III.

A. Notation and Problem Statement

Consider a digital image I defined on an N -dimensional dis-
crete (digital) space Z",i.e., I C Z". The goal of image seg-
mentation is to partition the digital image I into M disjoint re-
gions of interest R;, ¢+ = 1,..., M, where the final segmented
image S takes the form [4]

where R, NR; =0 fori# j. (1

Assume region Ry is reserved for the background (generally
set to “0” in the final segmented image). Also, assume without
loss of generality that each region of interest ;,¢ = 1,..., M —
1, consists of one connected component. (In practice the indi-
vidual regions in S are distinguished by region labels [18], [19].)
In the theory of relations, the segmentation S is formally called
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a partition of set I and each of the disjoint regions R; constitute
blocks of the partition [20].

Lower-case quantities, such as a, b, p, and ¢, represent image
points € I. An image point is called a pixel in two-dimensional
(2-D) images and a voxel in 3-D images [17], [19]. Upper-case
quantities, such as R;, I, S, and A, denote sets of points in Z".
The quantity f(p) gives the intensity, or gray-level, value of
image point p € I.

If two image points a and b are connected, then at least one
path (or ordered sequence of connected points) exists between
them [18]. Let the notation P,; represent such a path. Alter-
nately, let the notation (a,p1,p2,. .., pn,b) represent a partic-
ular path between a and b, where point « is a neighbor of point
p1. p1 is a neighbor of p, etc. For this paper, all points on a
path must lie in the same region of S, i.e., if a € R;, then
p1 € Ri;,ps € R;,...,b € R;. In 2-D images, connectivity
and neighbors are defined using either 4-connectivity or 8-con-
nectivity [18]. Analogously, for 3-D images, 6-connectivity or
26-connectivity define such concepts [17].

Focusing the segmentation process to region growing, the
segmented image (1) can be represented as

U R; )

where I is the image under consideration, RG(1)) denotes a re-
gion-growing algorithm governed by measure and growing cri-
teria ¢, and S represents criteria for defining the initial growing
points, or seeds, for regions. A seed is an image point that is
known to belong to a particular region and begins the construc-
tion of the region. The collection of measure and growing cri-
teria ¢ can be viewed as consisting of two components: @) =
(T, X). T specifies properties that nonseed points must have to
be included in evolving segmented regions. X specifies criteria
for excluding certain image points from all regions of interest.

In general each set of criteria Z, X, and S consists of a
predicate composed of Boolean operations of feature measures.
Without loss of generality, the pair (RG(v),S) constitutes
a complete image-segmentation algorithm based on region
growing. The operations are combined to form a complete
predicate for Z, X', or S, using the standard algebraic operators
{V,A,7}, where “V” is logical OR, “A” is logical AND, and
“?” is complementation. Thus, valid predicates for ) and S are
defined over a Boolean algebra. The exclusion criteria X can,
of course, be easily translated into additional criteria for 7.

Fig. 1(a) illustrates the flow for segmenting image I
using (RG(v),S). Seeds are first defined for the regions
R;;i = 1,...,M — 1. Next, the region-growing criteria
1 = (Z,X) are iteratively applied to construct the evolving re-
gions. The growing process terminates when application of the
region-growing algorithm produces no further changes to the
evolving segmented image. The final resultis S(I, RG(%), S).

Some region-based algorithms may not seem to fit the frame-
work of (RG(%), S) at first glance, but they can be transformed
into (RG(v),S). For example, the split-and-merge algorithm
actually performs the process of iteratively searching the en-
tire image for initial growing points or seeds (splitting) and then
growing back regions of interest (merging) [21].

S(I,RG(1)), S

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO. 8, AUGUST 2003

evolving regions
| —= Sord 1-——.{ Jand X J—S(l ,LRG(p), A)

(a)

evolvin ions

1 land X

(b)

Sor A }—»S(I,RG(I//),A)

Fig. 1. Processing flow for region growing. I is the input image, S specifies
the seed criteria, ¢» = (Z,X’) specifies the region growing criteria, and
S(I,RG(v),S) is the final segmented image.

Seed criteria S can consist of operations that implicitly
specify seed points for regions. Equivalently, S can also be
specified as an explicit set of seed points, such as

A={ay,...,ap—1} C1 3

where, in general, set A contains one seed point per region of
interest. Point a; acts as the initial growing point, or seed, for
R, as is the seed for Ro, . .., and ay; 1 is the seed for Ry;_1.
No seed is needed for the background region R, as all points
not assigned to a true region of interest R;,2 = 1,2,... , M —1,
are assumed to be relegated to the background. Each point of an
explicitly defined seed set, such as A in (3), is known a priori
to belong to a particular region. If A contains additional points
beyond (3), then it is assumed that these points are already as-
signed to one of the evolving regions R;,2 = 1, ..., M. Using
the seed criteria (3), the segmentation (2) can be stated equiva-
lently as

S(I,RG(v),

U R;. &

For the remainder of this paper, we assume that seed criteria S
are converted to an equivalent seed set A.

Consider now a different set of initial growing points given
by

B={by,....by—1} CI )

where b; acts as a possible seed for R, by acts as a possible seed
for Ry, etc. Suppose this set produces the segmented image

U R; ©)

where R is the region grown from by, R}, is the region grown
from b,, etc. In general, fori = 1,...,M — 1,a; # b; and
R; # R!. In this paper, the statement

S(I,RG(

S(I.RG(1), A) = S(I,RG(), B) %)

means that R, = R} fori = 1,2,..., M, per (4) and (6).
If two different segmentation algorithms, (RG(v), A) and
(RG(), B), satisfy (7), then they produce equivalent (iden-
tical) segmentations of image I. Fig. 2 illustrates many of
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the concepts defined thus far for a four-region segmentation
problem.

The following important question arises. What are the
requirements on region-growing algorithm RG(%) so that
S(I,RG(v), A) = S(I,RG(v)), B)? That is, what constraints
are required on a region-growing algorithm, so that the al-
gorithm is guaranteed to give identical segmentations when
starting with any valid seed set? Region-based algorithms
build regions from the seeds by following a certain evolving
growing sequence. If the seeds change, then the resulting
growing sequence changes. Our question is whether different
seed sets, (3) and (5), and growing sequences lead to the same
segmentation results. If not, what constraints can be placed
on an algorithm, so that it generates the same segmentation
regardless of the seed sets? That is, what constraints must a
region-growing algorithm have to be invariant to changes in the
seed set? The next subsection answers these questions.

B. General Definitions and Theorems

This section provides the basic definitions and theoretical cri-
teria for addressing the questions raised above.

Definition 1: Pab(I RG(fL/J)) is defined as the set of all pos-
sible paths {P},, P2, P3, ...} between points a and b, where
a,b € I, point a is a seed used to grow region R C I using
RG(9),and b € R.

Given region-growing algorithm RG(), if seed a produces a
region R that does not contain point b, then P, (I, RG()) =
(). Also, by the assumption that R consists of one connected
component, if b € R, then at least one path P,; must exist from
seed a to image point b. Within the context of relation theory, if
a path exists from a to b, then a and b must be in the same block
(region) of the partition S of I.

Definition 2: P 4p(I,RG(1))) is defined as the set of all pos-
sible paths from points in seed set A to points in set B

PAB (I RG(/IZJ))
= {Uf\ifl Paibi (I RG@/}))? if Vi7Paibi (IvRG(d))) 7é 0

0, otherwise
where A and B are given by (3) and (5).

The set P 4p(I,RG(1))) enumerates all paths from each
point a; € A to its corresponding point b; € B, provided
that at least one path exists to each b;. Pap(I,RG(¢))) = 0,
if any point a; € A [responsible for generating region R;
per (3)] does not have at least one path P, to its corre-
sponding point b; € B. If for some point a; € A, no path
Pab, exists, then b; ¢ R;. This immediately implies that
S(I,RG(v), A) £ S(I,RG(v), B), because, per (6), b; € R,
and R; # R,.

Definition 3: The notation

A4 BEW

is equivalent to P ap(I,RG(%))) # 0.
The quantity A REW) g is a binary relation from set A to set
B over region-growing operation RG(%)) [20].

The relation A G B implies that there is a way to form at

least one path in S(I, RG(v), A) between each initial growing
RG (1)
pointin A and its corresponding pointin B. Otherwise, A /

R4

Fig. 2. Depiction of the region-growing process for a 4-region segmentation
problem. R;, R-, and R3 are the regions of interest we wish to segment in 3-D
image I and R, is the background. The points a; and b, are possible seeds for
initiating the region growing process for I2;. Similarly, @> and b, are possible
seeds for R, etc. The dotted lines give examples of valid paths P“ibi between
corresponding points «; and b,. This figure illustrates the case where a; and b;
lead to the “same” I;; i.e., they produce equivalent segmentations S of I, per
(7). But, this is not necessarily the case in general.

B (or RG( ) B is false). Note that A
RG(Q/’) A

Lemma 1: The binary relation R

B does not imply
B
) is reﬂexwe and tran-

sitive. That is, for any seed set A C [, A RG) A (reflex-
ivity). Also, for any seed sets A, B,CcClIifA R B and
B " ¢ then A ™

RG()

Proof: (Reﬂex1v1ty) It is trivial that A —"~ A, because
P4 A(I ,RG(%)) contains the trivial one-point paths Py, q,,% =
1,2,....,.M — 1.

(Trans1t1v1ty) Given A

C (transitivity).

(w) B and B RG—(fb) C'. Then, for
all s = 1,...,M — 1, there exists Py,p, = (ai,...,b;) €
Pai},i (I, RG(T/))) and ’Pbici = (b, .- Ci) € Pbiﬂi (I, RG(Q/)))
By concatenating paths P, and Pp,., we have
73“7-67. = (ai, ey bi, a. ., CL) Thus, PAc(I,RG(d))) ;é @, or
AW o, O

(Many straightforward proofs are omitted below for clarity.
Details can be found in [22].)

Now, consider a general binary relation R on domain D, such
that R : D — D. The binary relation R is said to be symmetric
if "Rs < sRr,¥r C D and s C D [20]. The concept of a
symmetric binary relation can be applied to region growing. In

. . RG(y) . .
general, the binary relation —(:’b) is, of course, not symmetric
[20], but the following definition states when it is symmetric.

D, . . RG(®) . .
Definition 4: Binary relation 3() is symmetric if

Vseed sets A,B C I, A"t sl B implies B RGGH) A.
If RG() is symmetric, We denote it as R(}—(;/’)or SymgG(w),

If RG(¢)) satisfies A R B for all seed sets A, B C I,
then RG(¢) is called a symmetric region-growing algo-
rithm and denoted as SymRG(v). Furthermore, given
S(I,SymRG(v), A) in the context of the segmentation
(4), Definition 4 implies that we can arbitrarily choose sets
X = {z1,...,zpy—1} and Y {y1,---,ym—1}, where
i,y € Ry € S(I,SymRG(%)), A)\ Ry and form a bijection
(or one-to-one and onto) relation between X and Y. Also, by



. S G(3). . .
Lemma 1 and Definition 4, ymfi (w)ls an equivalence relation
and the segmented regions R;,: = 1,2,..., M, induced by

SymRG(¢)), are equivalence classes [20].

Lemma 2: Let p and q be any pair of points in the same re-
gion R; C S(I,RG(¢), A) forsome i = 1,2,..., M — 1, per
(3)-(4). If RG(v)) is symmetric (i.e., RG(t) can be replaced by
SymRG(%)) in (4)), then P, (I, SymRG(%))) # 0.

Lemma 2 implies that if a symmetric region growing algo-
rithm is used, then any point p in a region can be used to reach
(grow) any other point ¢ in the same region. This leads to the
following important result.

Theorem 1: Consider a symmetric region growi ]\/F algorithm
SymRG(#)), such that S(I,SymRG(¢), A) = |J;_; R; in the
context of (3)—(4). Suppose a; € A is replaced by an arbitrary
point p € R; to form alternate seed set A. Then, in the resulting
segmentation S(I, SymRG (1)), A), the region grown from p is
R;.

Theorem 1 states that if a symmetric region growing algo-
rithm is used, then any point p in region R; can be used as
a seed to grow the region R; and that the resulting grown re-
gion is always the same one. In fact, any and all seed points
a; € Ayi = 1,...,M — 1, can be replaced by any point
pi € R; C S(I,SymRG(%), A) to form a new seed set X and
the resulting segmentation S(I, SymRG(%), X) will be equiv-
alent to S(I,SymRG(¢), A).

Theorem 2: Given SymRG(%)) and seed sets A, B C I, as
in (3) and (5)

Pap(I,SymRG(¢)) # 0 < S(I,SymRG(v), A)
= S(I,SymRG(v), B). (8)
Proof: The instructive proof appears in the Appendix. [
Theorem 2 states that if a symmetric region growing al-
gorithm produces a segmentation of image I of the form
S(I,RG(¢y), A) = UZ 1 R, then, for any of the M — 1 regions
of interest R;, 1 =1,..., M — 1, any point p € R; can be used
as a seed point to produce the segmentation S(I, RG(¢)), A).
In fact, Theorem 2 eliminates the importance of the set of
initial growing points: the set A (or criteria S) has no influence
on whether a region-growing algorithm is symmetric or not.
Further, for a symmetric region-growing algorithm, the order
that points are visited during the growing process does not
matter. The subsection below proposes corollaries that assert
these points and helps bridge the gap from theory to practical

implementation.

C. Practical Conditions for Symmetric Region Growing

Corollary 1: Consider SymRG(v¢) and A such that
S(I,SymRG(¢), A) = Uf\il R;. Instead of using A to
produce the segmentation S(I,SymRG(v),A), consider
using B = {by,...,bpr—1}, where b; € R; and b; is the
first point of R; encountered while scanning image I. Then,
S(I,SymRG(v), A) = S(I,SymRG(v), B).

Proof: Follows immediately from Theorem 2. O

Corollary 1 reveals that the first encountered point of a re-
gion (e.g., the extreme upper left corner point of the region) can
be used to grow it with a symmetric region-growing algorithm.
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This concept helps in improving algorithm efficiency. Yet, be-
fore segmentation proceeds, no regions exist, and, thus, the first
encountered point of each region is not necessarily known. The
following corollary solves this problem.

Corollary 2: Consider (SymRG(%),S). Scan the digital
image of interest, I, sequentially. Grow regions from each
scanned point by applying criteria ¢ = (Z, X'), until all image
points have been visited. Examine the resulting regions using S.
If any point p of a region satisfies criteria S for region R;, then
assign the region to I?;; otherwise, relegate it to the background
R);. The resulting segmented image is S(I, SymRG(¢), S).

If the region growing algorithm is symmetric, Corollary 2
states that one can scan and grow regions first. After the growing
process, one then applies S to label the “useful” regions. All
unlabeled regions are merged into the background. This idea,
an attribute of symmetric region-growing algorithms, helps in
computation efficiency and is shown in Fig. 1(b).

Because of Theorem 2, the seed criteria S has no influence
on whether a region-growing algorithm is symmetric or not. It
is sufficient to focus on the properties of 1) = (Z, X') to define
a SymRG. Recall that 1) is a composite of Boolean operations.
1) can be represented as a single predicate, per Definition 5.

Definition 5: For p,q € 1, let g(p, q) be a predicate repre-
senting the growing criteria 1. Then,

RG(%)
9(p,q) =TRUE=p — 'q.

Thus, for any point p € R; C I, a neighbor ¢ will be included
in R; iff g(p,q) = TRUE.

Theorem 3: For g(-,-) representing 1) of region-growing al-
gorithm RG(v)), if g(-, -)is symmetric; i.e.,

9(p.q) = 9(q;p), Vp.g€l
then RG(v)) is symmetric.

Theorem 3 shows that if 1) is a symmetric function, then the
region-growing algorithm is symmetric. Since v/ can be denoted
as 1) = I A X, then, by the properties of a Boolean algebra, ¢
is symmetric if and only if both Z and X" are symmetric [20].
Similarly, each individual criterion or operation constituting 7
and X must be symmetric. Also, the image features employed
by Z and X should not depend on the previous states of the
features. Otherwise, the function employing the feature cannot
in general be symmetric. Thus, the growing process does not
depend on the order that image points are scanned.

Below are examples of common region-growing functions
9(p, q). The functions take on the value TRUE if the predicate
on the right-hand side is satisfied. In the examples below, p
and ¢ are neighboring image points, o1, 03, 03, and o4 are con-
stants, i (p) denotes the average gray-level value of point p’s
neighbors, and pi () denotes the average gray-level value of the
points constituting p’s member region:

9(p,q) =01 <|f(p) — f(q)] < o2 symmetric
g(p,:) =03 < f(p) <04 symmetric

9(p,") = |f(p) — in)| < o symmetric
9(pq) = |f(q) — uR(p)| < o not symmetric
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Function 2DSymRG(I, RG,¥,S)
Construct_1D_Regions(0, ¥)
Forrow j=1to Ny, -1

// Form 1D regions (line segments) in the first image row

Construct_1DRegions(j,) // For each row of the 2-D image, construct 1D regions

Region Merge(2, j, ¥)

// Merge overlapping similar regions (segments) in consecutive rows

EndFor // 2D regions are formed

Label Regions(S)
End

(a)

Function 3DSymRG(I, RG, ¥, S)
Do 2DSymRG(I(0), RG, ¥, S)

// Assign unique region IDs to equivalent regions

For 2D slice k=1to N, —1 // For each slice of the 3-D image, construct 2D regions
Do 2DSymRG(I(k), RG,%,S) // 2D regions are formed by invoking the 2D function

Region Merge(3, k, %)

Label Regions(S)
End

(b)

Function NDSymRG(I, RG,¥,S)
Do (N-1)DSymRG(I(0), RG, ¥, S)
For (N — 1)-dimensional image w=1to N, —1
Do (N-1)DSymRG(I(w), RG,¥,S)
Region Merge(N, w, )
EndFor
Label Regions(S)
End

(©)

// Merge overlapping similar 2D regions on consecutive slices
EndFor // 3D regions are formed
// Assign unique region IDs to equivalent regions

//Construct N-D regions, similar to (b)

Fig. 3. General set of algorithms for symmetric region growing. (a) 2-dimensional region-growing algorithm, which yields 2-D regions. (b) 3-D algorithm, which
invokes the 2-D algorithm and performs region merging along the z-direction to construct 3-D regions. (c) General N-dimensional algorithm, which follows
identically to the 3-D algorithm. It recursively calls an (N — 1)-dimensional algorithm, until reaching the basic 2-D algorithm of (a).

The labels indicate whether or not the functions are symmetric.
Also, functions of the form g(p,-) = g(p), which only depend
on one pixel, are clearly symmetric.

III. GENERAL SYMRG ALGORITHM

Theorem 3 states that a region-growing algorithm is sym-
metric if and only if all criteria constituting 1) are symmetric
functions. If the region-growing algorithm is symmetric, then
Corollaries 1 and 2 suggest that the implementation of the
SymRG can grow regions from the first region points scanned
and then apply the seed criteria S afterward to label the final
regions (Fig. 1(b)). This approach is invariant to which region
point is scanned first. It also motivates the following general
N-dimensional SymRG algorithm that is computation- and
memory-efficient. Assume that an N-dimensional image [
has image points (4,7,k,...,w,...), where 4 is the index
of a point along a row, j denotes row index %k denotes slice
number (for 3-D images), etc. The gray-level value of point
(4,7, ky...,w,...) is given by I(i,j,k,...,w,...). Also,
assume that seed criteria S and desired symmetric growing
criteria ¢ are given. Fig. 3 gives the set of algorithms. Two
global data structures are necessary [4]:

1) Region Table: Each entry in the region table con-
tains region ID, region bounding box, number of points,
number of 0-to-1 crossings, and number of seeds for a re-
gion.

2) Equivalence Table: The equivalence table is con-

structed and incrementally adapted after two equivalent
(homogeneous) regions merge. Each table entry repre-
sents a growing region and has a linked list of region ID’s
of equivalent regions and composite region information
gathered from the region table, plus the status of this entry.
A region may take on one of three states: growing, ROI,
or undesired. The growing regions continue to grow and
eventually reach final labeling. ROI regions are finished
growing and contain points satisfying the seed criteria.
The undesired regions are finished growing and contain
no seed points.

The following functions are used:

* Construct_1D_Regions(j,): Construct 1-D regions

(actually 1-D line segments) on the jth row by applying
growing criteria 1. The output is an updated Region
Table.

Region Merge(n,w,1)): Merge contiguous (n — 1)-di-
mensional regions between the wth and (w — 1)th (n —
1)-dimensional image using . The output is an updated
Equivalence Table.

Label Regions(S): Assign final region labels to the
regions that contain seeds satisfying S. The remaining
regions are relegated to the background. The output
Equivalence Table contains the final region labels.



The general N-dimensional algorithm (Fig. 3(c)) recursively
draws upon algorithms of lower dimensionality. At the end of
the recursion, the 2-D algorithm 2DSymRG is used. We point
out that the actual implementation need not be recursive. As sug-
gested by Corollary 2, growing does not depend on when points
are visited. Thus, if the image is /N-dimensional, all scanning
can be done in Ndimensions. Region information can be col-
lected incrementally as scanning proceeds. At the end, the seed
criteria are applied to the aggregated regions, represented in the
equivalence table, to form final regions.

Fig. 4 gives a detailed example of how 2DSymRG progresses.
The 2-D algorithm constructs 1-D regions (line segments) for
each row of a 2-D image. The region growing process starts
with row #1 and adds region information to the Region
Table. The dashed arrows in Fig. 4 represent the interme-
diate 1-D regions grown by the 1-D region-growing process
(Construct_1D_Regions). Intermediate regions enclosed by
‘<’ and ‘>’ satisfy criteria for desired region #1, while regions
enclosed by ‘[ and ‘] satisfy criteria for desired region #2.
After the intermediate regions are formed for the two rows,
region merging occurs (Region_Merge). The solid arrows
represent viable region merges. Regions are merged if they
are neighbors and if they satisfy common criteria. Each region
merge is denoted by an entry in the Equivalence Table.
The (p,q) entries next to each intermediate region denote
the merges. p denotes the intermediate region ID (stored in
Region Table) and ¢ denotes the new equivalent region
ID (stored in Equivalence Table). The equivalent region
consisting of the linked intermediate regions ultimately denotes
the grown region. In the example, intermediate regions #1
and #4 can merge because they have a neighboring segment
[X'21, X12] and satisfy the criteria of desired region #1. How-
ever, intermediate regions #2 and #5 are not merged because
they satisfy criteria of different desired regions, even though
they have a neighboring segment [ X 23, X 14]. The information
for the final grown regions is stored in the Equivalence
Table.

A SymRG segmentation is achieved by sequentially scanning
the image in two passes. The first pass performs region growing
and merging. The second pass then uses the seed criteria S to de-
fine final region labels. The algorithm is clearly z, y, z, . . ., etc.,
separable, and thus enables parallelism and faster computation.
Also, because points visited in the first pass aren’t needed until
the second pass, a SymRG algorithm requires only a few rows
(or slices) of the image to be available in memory at any given
time, plus a small amount of working buffer to maintain the re-
gion and equivalence tables. Most of the image can be stored in
the disk media for later use, without suffering significant disk
input/output overhead.

The general SymRG algorithm can also easily be adapted to
produce computation- and memory-efficient implmentations of
other common image-processing functions. Two such functions
are connected-component labeling and cavity deletion.

Connected-component labeling operates on a presegmented
binary-valued image to form labeled regions. Hence, it is a
special case of region growing. The SymRG algorithm can be
adapted to this function by merely defining growing criteria
that assigns all “1” points to a valid region. No seed criteria are
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Fig. 4. Two-dimensional SymRG example for two consecutive rows of a 2-D
image. Two different regions are being grown. Figure focuses on how regions
are formed, so gray-scale information is omitted. Refer to text for a complete
description.

needed. The resulting algorithm thus performs the labeling in
a single pass.

Cavity deletion removes interior cavities from regions con-
tained in a previously segmented image. Cavities are defined as
background (““0”) regions that do not touch the image boundary.
Their generation is virtually inevitable during practical image
segmentation unless the original image presents perfect
noise-free contrast between foreground and background (e.g.,
[23]). A 2-D (3-D) cavity deletion algorithm can be obtained by
adapting the connected-component labeling algorithm. We first
identify “background” connected-components; the growing
criteria ?) consists of a function that assigns all “0” points to
valid regions. In this case, if the foreground is defined as 8
(or 26 in 3-D)-connected, then the background is 4 (or 6 in
3-D)-connected, and vice versa. The background components
that do not touch the boundary of the image are considered to
be cavities and are then converted to the foreground value. The
final resulting image contains solid cavity-free regions.

IV. RESULTS

Results are presented that demonstrate the computation and
memory efficiency of the SymRG algorithm. Also, the applica-
tion of SymRG to 3-D medical image segmentation is discussed
and sample results are provided. References [14], [24] give ex-
tensive results in applying SymRG to this problem. We point out
that the purpose of this paper is to derive the required general
properties for an invariant seeded region-growing algorithm and
to provide an efficient implementation of this algorithm. We do
not propose a method that gives more accurate segmentations,
as this is a function of the specific growing criteria used and,
indeed, the real segmentation problem considered.

A. Computation and Memory Efficiency

Experiments were performed on both a Sun workstation
(Solaris 2.5.1, CPU: 250 MHz) and a PC (Windows NT
4.0, CPU: 400 MHz). Four 3-D images were used: an 8-bit
human liver image (“humliv”) generated by an electron-beam
computed-tomography (EBCT) scanner; and three 16-bit rat
liver images (“ctr01,” “ctr02,” and “ctr03”) produced by a
micro-CT scanner [14]. All of these images depict arterial trees
that gradually change in intensity as one traverses the tree.
Hence, region growing proved to be particularly well-suited
to segmenting these images. A previously proposed 3-D
arterial-tree segmentation algorithm [10] was adapted to the
SymRG paradigm; complete algorithm details for the SymRG
implementation appear in [14].
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We compared the segmentation time for SymRG [14] against
the previously proposed method [10]. Fig. 5 give the quantitative
results. Clearly, the SymRG approach is much faster.

A significant strength of SymRG is its memory efficiency.
See Fig. 6. For the 3-D case, the SymRG algorithm only requires
3 original and 3 working slices of the image, plus the memory
needed by the region and equivalence tables. Each entry of the
region table requires 18 bytes to store region-related informa-
tion. Each entry of the equivalence table uses 24 bytes for storing
information plus 2 bytes for each of the corresponding equiva-
lent regions. The number of entries in the region and equivalence
tables depends on the number of intermediate regions produced
during the process. Assuming an upper bound of 2V ~! equiva-
lent regions for an N-bit image, the approximate memory usage
for performing SymRG is 6 image slices plus 2V ~1 x (18+24)+
2 x 2N71 = 44 x 2V—1 = 21 x 2% bytes. In comparison, the
algorithm of [10] requires memory for 2 image copies plus the
region table.

B. Application to 3-D Medical Image Segmentation

We have been successfully applying 3-D seeded growing for
segmenting arterial tree structures in 3-D medical images for
many years [10]. But an issue that lingered during much of this
period was how to guarantee that the segmentation procedure
would be invariant to starting conditions. This question is par-
ticularly important when trying to segment 3-D branching tree
structures that distribute themselves in a complex way in a 3-D
image, since the starting point (root) of the tree is typically hard
to ascertain. Research on this fundamental question has led to
this paper’s effort on symmetric region growing.

We have used the SymRG algorithm extensively for 3-D
micro-CT image segmentation, as described in [14], [24].
Overall, we have segmented on the order of twenty such
images, containing various arterial tree structures, such as the
hepatic (liver) vasculature and coronary arterial tree. Most
importantly, the algorithm produces segmentations that are
invariant to the starting point. We now know, per the theoretical
development of this paper and the practical results of [14], [24]
that this invariance has been achieved (we merely had to rerun
the method with a different starting point to see that the results
were the same!). Fig. 7 provides an example from this effort for
the “humliv” image. Fig. 7(a) depicts a 2-D projection of the
original 3-D data set, Fig. 7(b) depicts a 2-D projection of the
segmented arterial tree, while Fig. 7(c) depicts a corresponding
surface rendering of the segmentation.

But, segmentation of these complex 3-D anatomical tree
structures has led to other questions beyond the scope of this
paper: What branches are significant branches? What is the
“best” way to describe a complex branching 3-D tree structure?
Purely automated image segmentation does not appear to be
sufficient or practical for resolving these questions; judicious
manual interaction seems to be required. Answers to these
questions are topics of our current research [24], [25].

humliv | ctrO1 | ctr02 | ctr03
Past on Sun 63 86 127 147
SymRG (1) 38| 51| 59| 69
SymRG (2) 1 8 ) 9

Fig. 5. Run-time comparison (in seconds). The past approach is the 3-D
region-growing implementation of [10]. The SymRG implementation of the
same region growing method is given in [14]. SymRG(1) was performed
on a Sun machine that has one 250 MHz CPU running Solaris 2.5.1, while
SymRG(2) was run on a PC that has a 400 MHz CPU running Windows NT 4.0.

humliv ctr01 ctr02 ctr03
Past 49.36 | 146.56 | 160.96 | 229.36
SymRG(1) 27.06 | 75.21 | 82.49 | 117.54
SymRG(2) 2.66 | 2.21 | 2.29 | 3.14

Fig. 6. Memory-usage comparison (in megabytes). The past approach is the
3-D region-growing implementation of [10]. The SymRG implementation
of the same region-growing approach is given in [14]. SymRG(1) retains a
copy of the image in the memory to avoid I/O overhead. SymRG(2) keeps
only six slices of the image in the memory when the memory resource is
limited; additional slices can be accessed from the disk. Dimensions of images
are as follows. humliv: 302 x 389 x 218. ctrO1: 319 x 247 x 487. ctr02:
399 x 215 x 491. ctr03: 400 x 400 x 375.

V. DISCUSSION

It is well known that region growing algorithms tend to
depend on where the growing process starts in an image or
how regions of interest are oriented in the image. The sub-
class of region-growing algorithms referred to as symmetric
region growing do not depend on where growing starts or
on the positions of image regions. The required condition
for a region-growing algorithm to be symmetric is that its
growing criteria consist exclusively of symmetric functions.
The symmetric property does not depend on the region seed
criteria used (but these criteria obviously affect what regions
get segmented).

A symmetric region growing algorithm can initiate the seg-
mentation process anywhere within an image. In particular, it
can begin to grow a region from the first point it reaches. Also,
the growing process can be performed first. The seed criteria
used to identify the final regions of interest can be applied later.
These ideas enable the design of a general computation- and
memory-efficient N-dimensional symmetric region growing
procedure. All the user needs to define are the growing criteria
1 (be sure they are all symmetric functions) and the seed
criteria S.

Other standard image-processing functions, such as con-
nected-component labeling and cavity deletion, can easily
be cast within the SymRG framework, thus affording these
functions the efficiency of the general SymRG procedure we
have proposed. Finally, image-segmentation algorithms such
as the Split/Merge approach [15], [21] can be implemented as
a symmetric region-growing algorithm, provided that all of the
splitting and merging criteria are symmetric functions.



(b)

Fig. 7. Various views of a 3-D human liver image (“humliv”) with bile
ducts selectively opacified by contrast agent. Voxel sampling intervals:
Azr = Ay = Az = 0.586 mm. (a) Coronal (x — z) maximum-intensity
projection of complete 3-D data set. (b) Coronal projection of segmented
arterial tree. (c) Surface rendering of segmented arterial tree.

APPENDIX

The discussion below is a proof of Theorem 2.
Proof: We use the definitions of
A, B, S(I,SymRG(v), A), and S(I,SymRG (¢), B), given
in (3)—(6), with RG(¢)) replaced by SymRG(%))in (4) and (6).
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(<) Given S(I,SymRG (¢), A) = S(I,SymRG(%), B),
which is (7). From (4), (6),and (7), R; = R/;,i =1,...,M.By
Lemma 2, for any pair of seed points (a;, b;),s = 1,2,..., M —

1, drawn from A and B, at least one P,p, exists. Therefore,

P.p(l, SymRG(9)) # 0, or AW W,
(=) Given P 45 (I,SymRG(%))) # (). Consider an arbitrary
point p € I. There are two cases to consider.

Case 1) foreground—Suppose for some z = 1,2,..., M —
1, p € R C S,SymRG(v),A).
Then, P, ,(I,SymRG(v)) # 0, fol-
lowing the definition of seed point a; in
(3). Also, P, (I,SymRG(v)) # 0 and

Py,q,(I,SymRG(v)) # 0. By Lemma 1, SymRg(¥)
is transitive. Hence, Py, ,(I,SymRG(y)) # 0.
Therefore, p € R;’ of S(I,SymRG(v), B), per (6).

Case 2) background—Suppose
p € Ry < S{,SymRG(9),A). Sup-
pose for some ¢ = 1,2,..., M — 1, there exists
b; € B, such that Py ,(I,SymRG(%))) # 0; ie.,
p € R; c S(,SymRG(¢)), B). As we know,
P..,(I,SymRG(¢)) # (. Thus, by Lemma 1
(transitivity), P, (I, SymRG(¢)) # 0, which im-
plies that p € R;. This contradicts the assumption.
Hence, Vb; € B, Py, ,(I,SymRG(¢)) = 0, which

implies that p € R/,.
Thus, Vp € I,ifp € R; C S(I,SymRG(%), A), then p €
R'; C S(I,SymRG(v), B), which implies (7). O
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