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Rationale and Objectives. The segmentation of airways from CT images is a critical first step for numerous virtual broncho-
scopic (VB) applications. Automatic or semiautomatic methods are necessary, since manual segmentation is prohibitively time
consuming. The methods must be robust and operate within a reasonable time frame to be useful for clinical VB use. The au-
thors developed an integrated airway segmentation system and demonstrated its effectiveness on a series of human images.

Materials and Methods. The authors’ airway segmentation system draws on two segmentation algorithms: (a) an adaptive
region-growing algorithm and (b) a new hybrid algorithm that uses both region growing and mathematical morphology. Images
from an ongoing VB study were segmented by means of both the adaptive region-growing and the new hybrid methods. The
segmentation volume, branch number estimate, and segmentation quality were determined for each case.

Results. The results demonstrate the need for an integrated segmentation system, since no single method is superior for all clin-
ically relevant cases. The region-growing algorithm is the fastest and provides acceptable segmentations for most VB applica-
tions, but the hybrid method provides superior airway edge localization, making it better suited for quantitative applications. In
addition, the authors show that prefiltering the image data before airway segmentation increases the robustness of both region-
growing and hybrid methods.

Conclusion. The combination of these two algorithms with the prefiltering options allowed the successful segmentation of all
test images. The times required for all segmentations were acceptable, and the results were suitable for the authors’ VB applica-
tion needs.
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New multidetector spiral CT scanners can produce three-
dimensional (3D) volumetric images of the human airway
tree consisting of hundreds of two-dimensional (2D) sec-

tions (1,2). A typical 3D image can include 400 or more
512 � 512 0.6-mm sections. Such images provide an ex-
cellent basis for virtual bronchoscopy (VB) applications
(3–15) and quantitative airway analysis (8,16–20). New
VB methods also allow for live guided nodule and lymph
node biopsies (13,15). A critical first step in these VB
applications is the segmentation of the airway tree. Man-
ual interactive segmentation has been applied in some
cases, but routine manual analysis is impractical for the
large 3D images arising from the new scanners (21,22). A
variety of semiautomatic airway segmentation techniques
have been proposed, but none have been conclusively
proved adequate for very large, high-resolution, 3D CT
chest images (4,20–30).
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We present an integrated airway segmentation system
that includes both region-growing and mathematical mor-
phology segmentation algorithms. Our system includes a
hybrid method (31) that gives results equivalent to a pre-
viously proposed morphology-only approach (22) but
greatly reduces the time required for segmentation. The
hybrid method is based on the results of both region-
growing and morphology approaches. We present a com-
parison study of the underlying image processing algo-
rithms in our segmentation system. This study reveals that
a small amount of filtering applied before segmentation
can greatly increase the robustness of all methods in the
case of patient breathing artifacts, stent distortion, and
partial volume artifacts. We will also illustrate the utility
of 3D airway segmentation in VB-assisted peripheral nod-
ule analysis and review the airway segmentation problem
and previously proposed segmentation methods.

A 3D CT image of the chest, I, comprises a stack of Z
contiguous sections. Each section consists of Xsize � Ysize

voxels (typically 512 � 512). Each voxel (x, y, z) has
intensity value I(x, y, z) and spacing (�x, �y, �z). The
human airway tree appears on a 3D image as a set of
connected, dark, branching tubular structures that tend to
decrease in diameter as the branching progresses. CT im-
ages are reasonably well calibrated, such that air is at
approximately �1,000 HU (ie, I [x, y, z] � �1,000 for a
pure air voxel [x, y, z]) while water is at 0 HU. Soft tis-
sues, such as those in the mediastinum, are situated in
the range of �100 to 200 HU, and dense bone is near
1,000 HU.

Airway-tree segmentation is a challenging problem for
several reasons. While airway voxels are generally near
�1,000 HU, noise and partial volume effects make it im-
possible to use a simple threshold to identify all airway
voxels within an image (18). Whenever mixtures of dif-
ferent tissue types comprise a voxel, intermediate gray-
level values are the result (32). Voxels straddling air and
airway walls typically have values well above �1,000
HU. These partial voxels can be resolved into tissue com-
ponents through statistical methods (32–35). Moreover,
due to the size of the voxel, thin or stenosed airways can
appear broken or discontinuous. Finally, image recon-
struction artifacts, such as those introduced when a sharp
high-frequency kernel is used, may cause the airways to
appear discontinuous (36). Such discontinuities may cause
problems during the segmentation, resulting in both un-
der- and oversegmentation errors.

Previously proposed airway segmentation methods
have employed four strategies: (a) knowledge-based tech-

niques (21,23,37), (b) region growing (4,24,25,30,38),
(c) central-axis analysis (20,27), and (d) mathematical
morphology (22,26,28,29). The technique proposed by
Sonka et al (21,23) uses an anatomic knowledge base
describing structural relationships between airways and
neighboring pulmonary vessels. Initially, 3D seeded re-
gion growing is used to identify large airways. The
knowledge-based rules are applied to the image on a sec-
tion-by-section basis. A fuzzy logic approach was later
added by Park et al (37) to improve specificity. Neither
method was tested on human data. More robust (less
knowledge-dependent) methods exist.

Region-growing-based methods use voxel connectivity
and a threshold to identify regions, usually through 26-
connectivity (4,24,25,30,38). Summers et al (4) use 3D
seeded region growing and a manually selected threshold
to segment airways for rendering. Schlathölter et al (38)
also use a set threshold in addition to other parameters to
perform a type of 3D seeded region growing. Region-
growing fronts are checked to prevent parenchymal leak-
age. The algorithm proposed by Mori et al (25) uses an
adaptive 3D region-growing algorithm that automatically
determines a threshold through repeated segmentations.
Wood et al (24) also employ 26-connected region grow-
ing in conjunction with a global threshold as a basis for
airway segmentation. Law and Heng (30) use adaptive 3D
region growing but add a genetic algorithm to identify the
center of the trachea automatically.

Although 3D region growing is extremely fast, it suf-
fers from partial volume effects and noise due to the
global threshold used during segmentation. The “optimal”
thresholds differ for large versus small airways because of
these factors. The resultant segmentation tends to lack
finer details of the airways and contains rough edges. All
of these similar methods can either lose details, depict
incomplete structures, or suffer from parenchymal leakage
(“explosion”) to varying degrees.

Segmentation algorithms based on central axis analysis
depend on central axis estimates for computing the seg-
mentation (20,27). The segmentation technique proposed
by Swift et al (20,27) performs a central axis computation
as a basis for airway segmentation. This computation be-
gins with a manually selected root site. The surface of an
ellipsoid positioned at this site is then sampled to deter-
mine more sites or to detect the end of a branch. The pro-
cess is then repeated for each new site. Further processing
produces a complete central axis tree. Bronchial walls are
then detected along this tree via thresholding. Finally, the
unified results of this process determine the segmented
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airway tree. The disadvantage of this method is the criti-
cal dependence on the central axis analysis results, which
may be imperfect or fail for several reasons. Concerns
include complex dependencies of initial parameters and
stopping criteria and the possibility of forming paths out-
side the airways.

The field of mathematical morphology involves image-
processing operations that focus on shape and gray-scale
properties (39,40). Airway segmentation methods that
draw on mathematical morphology tend to have two or
more processing phases (22,26,28,29). First, candidate
airways are detected by means of various morphologic
operations. Next, 3D relationships and shape characteris-
tics help determine the true airways from false candidates.
Bilgen et al (22) proposed an algorithm based on binary
and gray-scale morphologic operations. Two-dimensional
operators of varying sizes are applied to each section of
the image to identify candidate airways. Next, false candi-
dates are eliminated through 3D reconstruction. Pisupati
et al (26) proposed a similar technique that uses the same
principles to detect both pulmonary arteries and veins.
Prêteux et al (28) use a method based on a combination
of morphologic filtering, connection cost-based marking,
and conditional watershed techniques to segment the
bronchi of sheep lungs. Three-dimensional tree recon-
struction was not considered, since the primary focus was
2D airway detection.

Extending this work to 3D airway segmentation and
reconstruction, Fetita and Prêteux (29) have proposed
methods that use more complex morphologic operations
in addition to fractal analysis of candidate regions. An
updated selective marking and depth-constrained connec-
tion cost operator is used to identify possible airways.

Valid candidates are identified through a 3D reconstruc-
tion procedure involving model-based aggregation and
fractal analysis. While these methods are promising, their
computation time tends to be inordinate, particularly for
real clinical scenarios. Variations in the properties of the
morphologic operators directly affect the candidates deter-
mined. In addition, the reconstruction process, once can-
didates are defined, can be complex and unestablished.
Further, these methods have received little or no testing
on large high-resolution 3D CT chest volumes.

We present a segmentation system that includes adap-
tive 3D region growing and mathematical morphology to
give fast, robust methods for 3D airway-tree segmentation
for chest CT images.

This article describes our airway segmentation system,
presents results obtained by applying our system to hu-
man CT data, compares these results with other methods,
and demonstrates virtual bronchoscopic (VB) analysis for
bronchoscopic planning in a peripheral nodule case.

MATERIALS AND METHODS

This section describes our integrated 3D airway seg-
mentation system, which allows the user to choose from
three segmentation methods: (a) adaptive 3D region
growing, (b) morphologic based segmentation, and (c) the
hybrid method, which combines features of the other two
methods. Figure 1 shows a layout of these component
algorithms and how they comprise the system. Adaptive
lung region definition and region growing are described
first. We will then describe the other two methods and the
image acquisition protocol for our test images.

Lung Region Definition
The lungs are identified on the 3D CT image with a

simplified version of the method of Hu et al (41). In that
method, lung segmentation is performed in three steps to
produce separated left and right lungs with smooth
boundaries. We used a simplified algorithm since we did
not need precise results but only a bounding region for
the lungs.

Lung region definition begins with the determination
of a threshold to use for region growing at the root site.
This threshold is large enough that the 3D region growing
encompasses the entire lungs. The initial threshold, T0, is
set to �1,000 HU. An iterative procedure then determines
the final threshold. The segmentation threshold at step i,
Ti, is used to separate the entire image into voxels greater

Figure 1. System diagram of the hybrid and region-growing air-
way segmentation algorithms.
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than Ti and those less than or equal to Ti. The new thresh-
old, Ti�1, is set to

Ti�1 �
�b � �n

2
,

where �b and �n represents the mean gray level of the
voxels greater than Ti and that of all other voxels, respec-
tively. This procedure is repeated until the condition Ti �
Ti�1 is met. The lung region is then identified by means
of 3D region growing from the root site with threshold Ti.

Adaptive Region Growing
A robust adaptive 3D region-growing method provides

an airway segmentation option in addition to identifying
regions of the image containing the large airways for the
hybrid method. We increased the robustness of the
method described in reference 25 to provide good results
for a wide variety of images. This section first describes
adaptive 3D region growing and then describes our modi-
fications to improve robustness.

Three-dimensional region growing uses a threshold T
and a root site (xr, yr, zr) to determine which voxels are
added to the segmentation. In adaptive region growing, an
optimal T is found by repeating 3D region growing with
increasing values of T. For airway segmentation, the
threshold eventually becomes high enough that the region
growing breaks through the bronchial wall and enters the
lung parenchyma. The total volume V of the segmentation
is computed each time the 3D region growing is per-
formed, so the breakthrough can be detected by means of
a sharp increase in the volume, or explosion, and deter-
mined by a preset value called the explosion parameter,
E, set to a value below the expected volume after explo-
sion.

Let I be the original gray-scale image, and let IR(x, y,
z) � 0, @(x, y, z) � IR. IR will contain the output of the
3D region-growing segmentation. Let N26(x, y, z) be the
26-connected neighborhood of the voxel (x, y, z), and let
T be the region-growing threshold. Given the root site,
(xr, yr, zr), each neighbor (x, y, z) � N26(xr, yr, zr) such
that I(x, y, z) � T and IR(x, y, z) � 1 is added to the seg-
mentation; that is, we set IR(x, y, z) � 1. As each voxel is
added, its neighbors are also processed in this fashion.
This procedure is repeated until no new voxels are added
to IR. Then the volume V of this segmentation is com-
puted. The following steps outline how repeated 3D re-
gion-growing operations are used to determine an optimal

threshold: (a) initialize threshold to T � �1,000 HU;
(b) perform 3D region growing with root site (xr, yr, zr)
and threshold T; (c) calculate the volume of region grow-
ing, V, from step 2, ie, V � �x � �y � �z � [�@(x,y,z) �

IR IR(x, y, z)]; (d) if V � E, continue from step 2 with
T � T � 1; otherwise, (e) decrease the threshold, T �
T � 1, and perform final 3D region growing with this
value. Figure 2 is a block diagram of these steps.

We have made two modifications to the adaptive 3D
region-growing algorithm to increase robustness. The first
modification is applied to the output segmentation and is
represented by the “postprocessing” box in Figures 1 and
2. The final output of adaptive 3D region growing is un-
acceptable in most cases because of cavities in the seg-
mentation due to noise in the original image. Addition-
ally, the region boundaries in the final segmentation are
often rough. We solve these problems by applying a 2D
cavity filling and a 2D binary closing by a four-connected
neighborhood operator to each section of IR (40).

The second modification is the prefiltering of the data.
This option is manually applied as needed on a case-by-
case basis. Prefiltering is necessary when even the mini-
mal initial threshold creates an explosion into the paren-
chyma. Applying a 2D median filter to each section
solves this problem (40). Two mask sizes are used, de-
pending on the severity of the explosion. The first mask
is a four-connected neighborhood and the second is a 3 �
3 mask. The effects of these filters on region growing are
described in Results.

Figure 2. Block diagram of adaptive 3D region growing.
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Morphology-based Segmentation
In the hybrid method, a modified form of the morpho-

logic segmentation method proposed by Bilgen et al (22)
accounts for most of the processing. The method of Bil-
gen et al has two steps. First, 2D morphologic operations
are performed to determine candidate airway locations.
This step uses gray-scale reconstruction followed by
thresholding applied to each section. Next, 3D reconstruc-
tion is performed to recover the airway tree from these
candidate locations. These steps are depicted in Figure 1.
The result is a binary segmented volume of the air-
ways, IS.

Candidate airway locations are determined on a 2D
basis by means of gray-scale reconstruction followed by
thresholding. The basis operator for the reconstruction is
given by a binary four-connected neighborhood, B4, the
smallest element used in the process. Larger elements are
computed with repeated dilations of B4 as follows:

B4
b � bB4 � B4 � B4 � . . . � B4

,
(1)

	b � 1) dilations

where bB4 is the bth-order homothetic of B4.
An operator B4

b is applied to each individual section as
described below. Given the original image I, each section
z � 1, . . . , Z, of I is windowed (�1,000, 0) to form a
new 2D image S,

S	x,y
 � � I	x,y,z
 if I	x,y,z
 � 0
0 otherwise.

Windowing is used to eliminate the effect of variations
in more dense structures, such as bone. Figure 3a shows

an example of a windowed section. A marker image for
gray-scale reconstruction, J1, is then obtained from the
gray-scale closing of S with structuring element B4

b,

J 1
b � S � B4

b � 	S � B4
b
 � B4

b. (2)

Hence, J1
b is computed from the gray-scale dilation by

means of B4
b followed by an erosion by the same operator.

Next, J2
b is computed from J1

b with the following:

J k�1
b � max	J k

b � B4,S
, (3)

where max(. , .) computes the voxel-by-voxel gray-level
maximum. Equation (3) is repeated until no further
changes occur; that is,

J �
b 	x,y
 � J k�1

b 	x,y
 � J k
b	x,y
, � 	x,y
 � J k

b, (4)

where J�
b represents the final gray-scale reconstructed im-

age with structuring element B4
b. In this image, local min-

ima smaller than B4
b in S are filled in with a gray-level

value proportional to the difference between the maxi-
mum and minimum gray levels computed within a B4

b-
sized neighborhood of the minima. An example image of
J�

b is shown in Figure 3b.
A gray-scale difference image is then computed be-

tween J�
b and S and thresholded:

Cb	x,y
 � � 1, if J �
b 	x,y
 � S � TM.

0, otherwise.

The difference image is bright where local minima exist
in the image S. We use a value of 20% of the difference

Figure 3. Demonstration of 2D candidate
labeling for case h016, section 283. (a) Origi-
nal section is windowed to (� 1,000, 0).
(b) Gray-scale reconstruction is performed on
the image in a with a operator of a specific
size (J�

b for a specific b � 7). (c) Images b
and a are subtracted and then thresholded by
a value TM to produce a binary image of the
candidate airways. (d) The union of binary
images acquired through each operator is
taken to define all candidate airways.
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between the maximum and minimum possible values for
the parameter TM. In this case, since the data were win-
dowed between 0 and �1,000, the threshold value is 200.
Figure 3c gives an example of Cb, a binary section of
potential airways identified by operator B4

b.
To identify airways of various sizes, the above process

is repeated for each element B4
b, b � 1, 2, . . . , M, where

BM
4 is the maximum-sized operator. The union of this

series of images is taken to form the final output C for
the section z:

C	x,y
 � �
b�1

M

Cb	x,y
. (5)

The segmented section C contains all potential airways
acquired through all the operators. An example of C is
shown in Figure 3d. C is then inserted into IS to define
candidate airway locations for section z:

IS	x,y,z
 � C	x,y
, � 	x,y
 � C. (6)

This process is repeated for each section z of I.
Once the candidate airway locations are in IS, the 3D

airway tree is reconstructed by using a closed space dila-
tion with a unit kernel radius, as described in reference
22. Three-dimensional region growing with six-connectiv-
ity, rooted at the trachea, is used in this process, which
eliminates most false candidates, leaving only the airways
in IS. An example is shown in Figure 4. Simpler recon-
struction methods are also possible. A closing followed
by region growing at the root site provides better true
candidate recovery at the cost of greater false candidates.

An opening before this simpler reconstruction allows for
better recovery of stenosed branches. In both of these
operations, the operator used was a discrete sphere of
radius 1.

Segmentation methods using morphologic operations
can be computationally expensive. Reference 22 describes
the use of operators of various sizes to detect airways of
corresponding sizes. These costly operators need not be
applied to the entire image, however, but only to the ap-
proximate locations of the airways, because they have no
theoretical relevance to other portions of the volume. The
hybrid approach uses lung segmentation and adaptive 3D
region growing to create masks that greatly constrain the
volume where these operators are applied.

Hybrid Lung Segmentation Algorithm
A diagram of the hybrid algorithm is shown in Figure

1. The inputs are the 3D CT image of the chest and the
location of the proximal end of the trachea, or the root
site. The hybrid algorithm requires four parameters: (a) E,
the explosion parameter for adaptive 3D region growing;
(b) s, the maximal operator size considered “small”;
(c) M, the maximal operator size for morphologic opera-
tions; and (d) TM, the preset threshold used by the mor-
phologic operator segmentation method. The final output
is the segmented image of the airways, IS.

The original image and root site are used throughout
the method. The goal of the method is to provide the
same quality of segmentation as an existing technique
(22) but with an order of magnitude reduction in compu-
tation time. This increase in speed is achieved by using
an adaptive 3D region-growing method (introduced in
reference 25) combined with lung region definition. More

Figure 4. Coronal projections of the candi-
date labeled image and the image after 3D
reconstruction.
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specifically, we identify the locations of larger airways by
using 3D region growing. Computationally expensive
morphologic operators for large airways are then applied
only to these identified regions. Areas of the lungs are
masked by using lung region definition. Operators for
smaller airways are applied in the restricted region en-
compassing only this area. These operators are character-
ized by their integer size, b. Several other segmentation
approaches make use of morphologic operations followed
by reconstruction (26,28,29). These approaches can also
be improved with our method.

Lung region definition creates a 3D mask of the data
that defines the subvolume of the image containing the
lungs. Once the lung region is segmented, the maximum
bounding 3D parallelopiped of the segmentation, WL, is
used as a mask for smaller morphologic operators, b � 1,
. . . , s. The Morphology-based Segmentation section de-
scribes how these operators of smaller sizes are applied
on a section-by-section basis.

Adaptive 3D region growing uses an optional prefilter
along with a specified explosion parameter, E, to provide
a segmentation of the airways, IR. The E parameter sim-
ply ensures that an acceptable volume is segmented. This
segmentation is used to provide a set of more refined
masks for each section of the image, WR

i , I � 1, . . . , Z.
These masks are then used by the remaining larger opera-
tors, b � s � 1, . . . , M. Although adaptive 3D region
growing is fast, the segmentation does not always capture
fine details on the order of one or two voxels, but it does
give an excellent estimate of the location of larger air-
ways. The computation time of this segmentation is small
compared with that of any method employing morpho-
logic operations. In summary, 3D region growing is used
to create a rough segmented volume of the airways, IR.
For each section I � IR, a maximum bounding 2D region
encompassing the segmented airways, WR

i , is determined.
Each window is then expanded by the radius of the larg-
est operator to ensure proper detection of large airways
on the boundaries.

Once the masks, WL and WR, are computed, the recon-
struction proceeds according the gray-scale reconstruction
method described in Morphology-based Segmentation, but
the operators are applied only to the regions dictated by
these masks.

Image Acquisition
Thirty 3D CT images, obtained with either an MX8000

(Philips Medical Systems, Best, Netherlands) or an Aquil-
ion (Toshiba America Medical Systems, Tustin, Calif)

multisection CT scanner, were used to test the system.
The subjects were studied under a protocol approved by
the University of Iowa’s Institutional Review Board. The
scanning parameters for the Philips scanner included the
following: 120 kVp, 100 mAs with a multisection pitch
of 5 (equivalent to a single pitch of 1.25), 0.5-second ro-
tation time, 0.6-mm table increment, 180° scan angle, and
1.3-mm section thickness. The images obtained with this
scanner included four airway images, two lung nodule
images, seven mediastinal lymph node images, and six
other images, all obtained with a D reconstruction kernel.
In addition, eight images obtained with the MX8000
scanner were used to compare the A, B, and D recon-
struction kernels. Three images from the Toshiba scanner
were used to test the robustness of the system with a dif-
ferent scanner. All images were 512 � 512 pixels in the
transverse plane but varied in resolution and the number
of sections. Table 1 lists the testing images in detail.

RESULTS

In this section we present the results of the segmenta-
tion system applied to the test images. Various compo-
nents of the system are compared, and the effects of fil-
tering are presented. We then demonstrate the application
of these methods to human VB analysis of a peripheral
nodule. Adaptive region growing, morphologic recon-
struction, and the hybrid method were compared for the
images listed in Table 1. In each case, the root site was
manually identified. Computation times were determined
on a 933-MHz Xeon PIII personal computer (Dell Preci-
sion 620; Dell Computer, Austin, Tex) with two central
processing units and 2 GB of memory. The explosion
parameter, E, was set to 50,000 mm3 for all but one case.
The threshold parameter for the morphologic method was
kept at TM � 200 for all cases. The largest operator clas-
sified as small, s, was determined from the smallest air-
way 3D region growing can segment continually. A value
of 3 was used for s since airways with cross sections
larger than B3

4 are hardly influenced by partial volume
effects. The largest operator, M, is based on the size of
the largest airway on the image. We found that setting
M � 18 adequately captures all the airways in our data
sets.

The morphology and hybrid methods were first com-
pared in terms of average execution time for 10 of the
images in Table 1. In each case, the region-growing input
to the hybrid method was checked to make sure that no
major parenchymal leakage occurred. Minimal manual
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interaction was required to assure this condition. The hy-
brid method performed labeling more than 20 times faster
on average (641 vs 13,751 seconds), and the 3D recon-
struction time was also improved by 8% (737 vs 799 sec-
onds).

Next, the adaptive region-growing and hybrid methods
were compared. Two main factors were analyzed: robust-
ness and execution time. Robustness was defined as the
method’s ability to complete a visually acceptable seg-
mentation. Qualities such as segmentation volume and
number of branches were also compared. The hybrid and
region-growing methods were compared according to
these criteria for all the images.

Table 2 shows the quality of segmentations according
to the methods and filtering levels. It also divides the im-

ages into those reconstructed with the D kernel and those
reconstructed with the A and B kernels. All of the images
were successfully segmented by both methods, although
in some cases prefiltering was required for a successful
segmentation. The quality of the segmentations was deter-
mined subjectively according to the quality of the
branches segmented. Table 3 lists the mean segmentation
times for both methods, with standard deviations and
ranges. The average volumes were computed for all suc-
cessful segmentations. There was a general decrease in
volume with increasing filtering for both methods. This
decrease was greater with the region-growing method. For
the region-growing method, the average volumes dropped
by approximately 20% and 21% for the star median and
3 � 3 median filters, respectively. The hybrid method

Table 1
Images Used in Testing the Algorithms Making up the 3D Airway Segmentation System

Image Z �x �y �z Comments

h017 239 0.56 0.56 0.50 Toshiba
h022 280 0.58 0.58 0.50 Toshiba
h023 100 0.60 0.60 3.00 Toshiba
h010 535 0.69 0.69 0.60 Philips, D kernel
h015 476 0.57 0.57 0.60 Philips, D kernel
h018frc 448 0.57 0.57 0.60 Philips, D kernel
h018tlc 475 0.57 0.57 0.60 Philips, D kernel
h001a 414 0.57 0.57 0.60 Philips, A kernel
h008 389 0.59 0.59 0.60 Philips, A kernel
h026 502 0.76 0.76 0.60 Philips, A kernel
h026b 502 0.76 0.76 0.60 Philips, B kernel
h001 414 0.57 0.57 0.60 Philips, D kernel, lung nodule
h019 597 0.74 0.74 0.60 Philips, D kernel, lung nodule
h003 210 0.66 0.66 0.60 Philips, D kernel, airway case
h009 492 0.69 0.69 0.60 Philips, D kernel, airway case
h012 149 0.62 0.62 0.60 Philips, D kernel, airway case—papilloma
h016 556 0.72 0.72 0.60 Philips, D kernel, airway case
h002 515 0.59 0.59 0.60 Philips, D kernel, mediastinal lymph node
h004 262 0.59 0.59 0.60 Philips, D kernel, mediastinal lymph node
h005 479 0.59 0.59 0.60 Philips, D kernel, mediastinal lymph node
h006 574 0.72 0.72 0.60 Philips, D kernel, mediastinal lymph node
h007 488 0.65 0.65 0.60 Philips, D kernel, mediastinal lymph node
h008 389 0.59 0.59 0.60 Philips, D kernel, mediastinal lymph node
h014 411 0.66 0.66 0.60 Philips, D kernel, mediastinal lymph node
h028Afrc 370 0.68 0.68 0.60 Philips, A kernel
h028Bfrc 370 0.68 0.68 0.60 Philips, B kernel
h028Dfrc 370 0.68 0.68 0.60 Philips, D kernel
h029Afrc 412 0.66 0.66 0.60 Philips, A kernel
h029Bfrc 412 0.66 0.66 0.60 Philips, B kernel
h029Dfrc 412 0.66 0.66 0.60 Philips, D kernel

Note.—Images are listed by case number. Z � number of sections, �x and �y � axial plane resolutions, and �z � section thickness.
Comments indicate the scanner used (Philips MX8000 or Toshiba Aquilon), the reconstruction kernel, and case details (see Image Acqui-
sition for additional information).
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showed average volume drops of 1.2% and 2.5% for the
same filters and also demonstrated 4% greater average
volumes for nonfiltered segmentations compared to the
region-growing method. Finally, the number of branches
of segmentations considered “excellent,” as listed in Ta-
ble 2, were counted by an automatic path-planning algo-
rithm (42). The region-growing segmentations had an av-
erage of 55 branches, while the hybrid method segmenta-
tions had an average of 74 branches.

Figures 5, 6, and 7a show the maximum-intensity pro-
jection views of airways segmented with the three meth-
ods. Figures 7b and 8 show surface renderings based on
the segmentation results.

Figure 5 shows case h007 segmented with the three
different segmentation methods and three levels of filter-
ing. The filtering enables segmentations to be completed
successfully. All three methods displayed comparable seg-
mentation quality, but the hybrid method showed no
small explosion artifacts and achieved acceptable segmen-
tation with less filtering than the region-growing method
required. Figure 8 shows the surface renderings of the
airways segmented with the 3 � 3 median filter.

Figure 7a shows the results in case h006, without fil-
tering. The 3D region-growing and hybrid methods had
similar results. Each method missed airways recovered by
the other. With the region-growing method there was a
minor explosion in the segmentation. Filtering or lower-
ing the explosion parameter can correct this problem, but
since the explosion volume is small, it would be difficult
to determine the proper setting according to the volume
change during region growing. Figure 7b displays a sur-
face-shaded view based on the hybrid segmentation re-
sults.

Figure 6 displays the results obtained without filtering
in case h008. The hybrid method was the only successful
one. Region growing failed because a low gray-level
voxel directly linked the airways to the parenchyma. The
mathematical morphology method failed because larger

Table 2
Results with the Hybrid and Region-growing Algorithms
with Various Filters

Method and Filter

No. of Images

Excellent

Minor
Branch
Fusion

Major
Branch
Fusion Failure

Region-growing
No filter 14 8 4 4
Star median 21 3 5 1
3 � 3 median 23 6 1 0

Hybrid
No filter 12 14 1 3
Star median 17 8 2 3
3 � 3 median 17 9 1 3

Region-growing AB
No filter 6 1 0 0
Star median 6 1 0 0
3 � 3 median 7 0 0 0

Hybrid AB
No filter 4 3 0 0
Star median 5 1 1 0
3 � 3 median 6 1 0 0

Region-growing D
No filter 8 7 4 4
Star median 15 2 5 1
3 � 3 median 16 6 1 0

Hybrid D
No filter 8 11 1 3
Star median 11 7 1 3
3 � 3 median 10 8 1 3

Note.—The quality of the segmentation was subjectively deter-
mined according to the fusing of branches. Images rated as ex-
cellent had no noticeable fusion. The next two categories in-
cluded images with fusion of small peripheral branches and those
with fusion of larger branches. Finally, failure was defined as large
sections fused or incorrectly segmented images. The first six
rows give results for all images, while the remaining rows give
results for images reconstructed with the A or B and the D kernel,
respectively. For path planning for navigational purposes, all im-
ages are acceptable except for those considered failures. Figure
9a is an example of major branch fusion, and Figure 9b shows a
segmentation classified as excellent. The segmentation on the left
in Figure 7a shows minor branch fusion.

Table 3
Timing Comparisons for Region-growing and Hybrid Methods

Method Mean Time (sec)

Region growing
No filter 19 � 12 (5–67)
Star median 70 � 18 (17–92)
3 � 3 median 116 � 29 (28–158)

Hybrid
No filter Lab: 761 � 357 (198–1,561)

Rec: 947 � 571 (113–2,365)
Star median Lab: 745 � 332 (184–1,478)

Rec: 835 � 509 (90–2,247)
3 � 3 median Lab: 730 � 303 (176–1,383)

Rec: 719 � 408 (90–1,604)

Note.—Only successfully segmented images were considered
in these statistics. Times are given as means � standard devia-
tions, with ranges in parentheses. Lab � labeling time, Rec � re-
construction time. The region-growing method is considerably
faster than the hybrid method, but both are acceptable for clinical
use.
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structuring elements identified candidates that eventually
linked airways to the parenchyma. Filtering prevented
failure in the latter two methods.

We have applied the segmentation method to over 30
human cases thus far, using an integrated VB system
(11,20,44,45). The system permits assessment of 3D CT
images and live guidance of follow-up bronchoscopy.
Reference 45 illustrates the system’s use for phantom
studies, while reference 20 describes preliminary efforts
to assess 3D CT images in human subjects.

Figures 9 and 10 illustrate the use of our segmentation
method and the VB system in a peripheral nodule case.
The initial 3D CT image was obtained with a Philips
MX8000 multidetector helical CT scanner and consisted
of 414 sections (512 � 512; section thickness, 0.6 mm;
axial plane resolution, 0.566 mm). Figure 9 illustrates
airway-tree segmentation results with and without filter-
ing. After segmentation, we used an automated algorithm
to compute the centerline paths for the segmented tree
(42). Twelve generations of airway branches were ex-

Figure 5. Maximum-intensity projection images of different segmentations of a 512 � 512 CT image of the chest (case h007) (488 sec-
tions; voxel spacing, � x � �y � 0.654297 mm, �z � 0.599976 mm; image size, 244 MB. The three segmentation algorithms are shown
in the columns, and the different levels of filters in the rows. Filtering the image before processing increases the robustness of the seg-
mentation methods, but it also tends to remove smaller branches or identify nonairway regions, depending on the algorithm used (root
site � [266, 221, 0], E � 50,000 mm3, TM � 200).
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tracted, which included 182 branches and 93 paths (see
reference 20 for definitions); some paths toward the pe-
riphery are false. The segmentation step took 2 minutes
26 seconds, compared with 3 minutes 19 seconds for the
path analysis. All processing was done on a Dell Inspiron
(Dell Computer) 3800 laptop computer (700-MHz central
processing unit, 512-MB RAM).

Figure 10 gives a composite VB system view for the
case. A peripheral nodule is clearly visible on the coronal
projection view in the right lung. We manually defined
the nodule with the system’s built-in editing tools. We
then created a surface file by using a custom surface-dila-
tion procedure and a standard marching cubes algorithm
(46). All tools clearly show the nodule, while the endolu-
minal renderer shows an interior view in the right main
bronchus. These data could be used for planning fol-
low-up biopsy.

DISCUSSION

We have presented an airway segmentation system
based on region-growing and mathematical morphology
algorithms for segmentation. We have evaluated the un-
derlying algorithms by testing the system with a group of
30 images. The results show that no single method is su-
perior in all respects, demonstrating a need for a multifac-
eted segmentation system. The use of two methods along
with filtering allows all the images to be successfully seg-
mented. In this section we discuss the effects of filtering
on segmentation robustness and quality, the different re-
construction kernels, and the results of the hybrid algo-
rithm compared with the other methods.

Filtering the image before segmentation increases the
robustness of the algorithms by helping eliminate low-
density voxels that connect the airways to the paren-

Figure 6. Maximum-intensity projections of three different segmentation algorithms for
a 512 � 512 CT image of the chest (case h008) (389 sections; voxel spacing, �x �
�y � 0.585938 mm, �z � 0.599976 mm; image size, 194 MB). The left image was ob-
tained with adaptive 3D region growing, the center image with the hybrid algorithm, and
the right image with the standard morphologic algorithm (failed). All three images were
computed without filtering (root site � [242, 211, 0], E � 50,000 mm3, TM � 200).

Figure 7. (a) Maximum-intensity projections of three different segmentation algorithms for a 512 � 512 CT image of the chest (case
h006) (574 sections; voxel spacing, �x � �y � 0.724609 mm, �z � 0.599976 mm; original image size, 287 MB). The left image was ob-
tained with adaptive 3D region growing, the center image with the hybrid algorithm, and the right image with the standard morphologic
algorithm. All three images were computed without filtering. The center image was used to mask the original gray-scale data. (b) The
marching-cubes algorithm with a threshold of �600 HU was then applied to the masked gray-scale data to create the surface shown
(root site � [273, 248, 0], E � 50,000 mm3, TM � 200).
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chyma. In most of the cases shown in Table 2, the num-
ber of excellent segmentations increased with greater fil-
tering.

Filtering has predictable effects on the region-growing
segmentation. In the column for the region-growing
method in Figure 5, there are two noticeable effects of
increased filtering. The first is successful segmentation.
The second effect is negative, in that smaller branches are
eliminated. The hybrid and morphologic methods do not
respond as predictably to filtering. This behavior is due to
the more complex two-step process used in computing the

segmentation. Filtering has a less predictable effect on the
morphologic operations but can still result in improve-
ments in some cases. A trend toward more segmentations
classified as excellent is noticeable for both methods in
Table 2.

The hybrid method tends to be more robust against
failure than the original morphology method or the re-
gion-growing method when filtering is not used. The use
of filtering benefits the region-growing algorithm the
most, since the hybrid algorithm is less prone to leaks
into the parenchyma. Since filtering tends to reduce the

Figure 8. Surface renderings based on the segmented images from Figure 5 obtained with the 3 � 3 median filter and (a) the region-
growing, (b) hybrid, and (c) morphology methods. The segmentations were dilated by three voxels and used as a mask on the original
gray-level data. The marching-cubes algorithm with a threshold of �800 HU was then used on the masked data (43).

Figure 9. Coronal maximum-intensity pro-
jection images of a segmented airway tree
obtained with 3D CT of a peripheral nodule
(see text for image details). (a) Image ob-
tained with region growing and no filtering
(root site � [273, 292, 0]; E � 50,000 mm3).
Note the extraneous noisy extensions. (b) Im-
age obtained with the same segmentation
parameters as in a but with a star median
filter (five-point windows, including the central
pixel and its four neighboring pixels along the
vertical and horizontal axes); the view is
markedly cleaner.
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number of peripheral branches, the segmentation volume
tends to decrease. The hybrid method, however, is less
influenced by filtering.

In summary, filtering increases the robustness of these
algorithms but comes at the cost of losing smaller
branches or identifying additional nonairway structures.
For several images, segmentation with adaptive region
growing was unsuccessful, but prefiltering solved the
problem in each case. The four-connected neighborhood
median filter eliminates the finer branches, and the 3 � 3
median filter eliminates thicker ones.

The assortment of images included several different
reconstruction kernels. Table 2 distinguishes images re-

constructed with the D kernel and those reconstructed
with the A or B kernel. The images are classified into
four levels of quality, from excellent to failure. The ratio
of excellent images to other quality levels is higher for
images reconstructed with the A or B kernel. This prop-
erty is seen for both reconstruction methods. The D ker-
nel has more instances of branch fusion and failures. It
offers a sharp reconstruction for more pronounced edges.
This quality also produces more noise and strengthens
artifacts, reducing the segmentation quality. Voxels that
make up the airway walls in the peripheral airways are
altered more with the D kernel, creating a fusion of pe-
ripheral branches. These results suggest that an A or B

Figure 10. Composite view in a VB system for the peripheral nodule case shown in Figure 9. The 3D surface tool shows the rendered
airway tree and precomputed airway centerlines. One path that leads closest to a peripheral nodule is highlighted. Arrows on the various
tools indicate the location of the nodule. The coronal projection view is a half-sized maximum-intensity projection of all data between
Y � 150 and Y � 400. It shows the nodule and the highlighted (white) path closest to it. The Coronal Front-to-Back Slab depicts a
depth-weighted maximum view near the nodule (field of view � 30, depth of vision � 40, viewing window � [�1,024, 196]) (47). The
Transverse and Coronal Slicer views show original section data in the transverse and coronal directions; a mediastinal viewing window
was used (WL � �40, WW � 400). Finally, the Endoluminal Renderer shows an interior airway view approaching the end of the right
main bronchus; this site is shown by the ball on the 3D surface view and the termination of the white path on the coronal projection view
(case h001) (root site � [273, 292, 0], region growing, star median filter, E � 50,000 mm3, slab � [focus � 20, vision � 30, maxwin �
400]).
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reconstruction kernel would be more appropriate for seg-
mentation. Reinhardt et al (18) also found that a normal
reconstruction kernel is better suited for quantitative pur-
poses.

As previously mentioned, neither method is superior.
The adaptive region-growing and hybrid methods each
have distinct advantages. The hybrid method, however, is
superior to the morphology method in that it substantially
reduces execution times while producing very similar re-
sults. These conclusions are discussed below.

Adaptive 3D region growing proved to be the fastest
method for obtaining an airway segmentation, but several
airways can be missed and the lumen edge definition
tends to be poor. Figure 11 demonstrates the superior
edge localization of the hybrid method. Although fusion
of the branches increases the segmented volume slightly
and the hybrid tended to have more fusion cases, the edge
localization is probably why its segmentation volume
tended to be greater. Furthermore, for the images classi-
fied as excellent, those segmented with the hybrid method

had more branches on average than those segmented with
region growing: 74 versus 55.

As one case demonstrates, however, adaptive region
growing is a necessary method of the system for proper
segmentation. Case h012 is an image obtained from a
patient with the papilloma virus, which creates sacs that
are valid portions of the airways. A rendering and cross
section are shown in Figure 12. Since the sacs occupy a
substantial volume, the explosion parameter, E, was set to
70,000 mm3. Morphology-based methods such as the hy-
brid method tend to fail due to their inability to identify
the shape and consistency of the sacs.

The hybrid algorithm considerably reduced the time
required for segmentation compared with the morphology
method, suiting it for clinical use. The outputs of these
two methods are similar, but in addition to the speed ad-
vantage, the hybrid method has better use of larger opera-
tors. These operators are only applied to locations with
airways of similar sizes. Again, the larger operators have
no theoretical relevance in locations where there are no

Figure 11. Sections of gray-scale 3D CT
data with overlays of the resultant segmenta-
tions obtained with region-growing and hybrid
methods. The hybrid method demonstrates
better edge localization since it captures
more of the airway lumen than the region-
growing method. This property partly explains
why the hybrid method results in greater seg-
mentation volumes. This feature also makes
hybrid segmentation better for quantitative
analysis.

Figure 12. (a) Surface rendering of the air-
way from a patient with papilloma (case
h012). Region growing was the only success-
ful method. (b) Magnified view shows a win-
dowed (�1,000, 0) section of the data. The
morphology method does not segment the
cavity successfully due to the cavity’s odd
size, shape, and contents. This case demon-
strates the necessity of the region-growing
method in a clinical environment (root site �
[266, 221, 0], region growing, star median fil-
ter, E � 70,000 mm3, TM � 200).
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similarly sized airways. Hence, the hybrid method is less
likely to produce as many false candidates, making recon-
struction faster and the output more successful. The hy-
brid method was more than 20 times faster than the mor-
phology method for labeling and about 8% faster for re-
construction.

These results indicate that adaptive 3D region growing
is appropriate when a fast segmentation is needed for path
planning. The hybrid approach offers better edge localiza-
tion at the cost of more computation time. Both methods
are necessary for clinical use, however. Additionally,
given the choice of reconstruction kernel, the A and B
kernels tend to produce better results.

Although human intervention is required to select pre-
filtering of the data, the use of the median filter before
segmentation increases the robustness of all three algo-
rithms. Adaptive region growing benefits the most from
prefiltering, since region growing is prone to parenchymal
leakage. The median filter helps to reduce the number of
connections between airways and the parenchyma.

The system described here is being used as part of a
VB analysis system to guide path selection and treatment
planning (11,15). The ability to segment the airways of-
fers a basis for variety of image analysis methods. Path
calculations, rendering, and quantitative analysis all de-
pend on accurate airway segmentation.
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