3D Image Fusion and Guidance for Computer-Assisted Bronchoscopy

William E. Higgins, Lav Rai, Scott A. Merritt, Kongkuo Lu, Nicholas T. Linger, and Kun-Chang Yu

Penn State University Depts. of Electrical Engineering and Computer Science and Engineering

University Park, PA 16802, USA

SPIE Optic East: Three-Dimensional TV, Video, and Display IV, Boston, MA, 25 Oct. 2005.

Lung Cancer

- Lung Cancer: #1 cancer killer, 30% of all cancer deaths, 1.5 million deaths world-wide, < 15% 5-year survival rate (nearly the worst of cancer types)
- To diagnose and treat lung cancer,
 - 1) 3D CT-image preplanning noninvasive
 - 2) Bronchoscopy invasive
- 500,000 bronchoscopies done each year in U.S. alone
 - → Procedure is LITTLE HELP if diagnosis/treatment are poor
- A test for CT Image-based Lung-Cancer Screening in progress!
 10-30 million patient population in U.S. alone!
 - → Screening is WORTHLESS if diagnosis/treatment are poor

3D CT Chest Images

3D Mental Reconstruction How physicians assess CT scans now

Visualization Techniques – see "inside" 3D Images

multi-planar reconstruction²

STS-MIP sliding-thin-slab maximum intensity projection⁶

projection imaging¹

virtual endoscopic rendering⁵

curved-section reformatting³

¹{Hohne87,Napel92} ²{Robb1988,Remy96,McGuinness97} ³{Robb1988,Hara96,Ramaswamy99} ⁴{Ney90,Drebin88,Tiede90} ⁵{Vining94,Ramaswamy99, Helferty01} ⁶{Napel, 92}

Bronchoscopy \rightarrow For "live" procedures

video from bronchoscope $I_V(x,y)$

Figure 19.4, Wang/Mehta '95

Difficulties with Bronchoscopy

- 1. Physician skill varies greatly!
- 2. Low biopsy yield. Many "missed" cancers.
- 3. Biopsy sites are beyond airway walls biopsies are done blindly!

Virtual Endoscopy (Bronchoscopy)

• Input a high-resolution <u>3D CT chest image</u>

 \rightarrow virtual copy of chest anatomy

• Use computer to explore virtual anatomy

→ permits unlimited "exploration"

\rightarrow no risk to patient

Endoluminal Rendering I_{CT}(x,y) (inside airways)

Image-Guided Bronchoscopy Systems

Show potential, but recently proposed systems have limitations:

- CT-Image-based
 - •McAdams *et al.* (*AJR* 1998) and Hopper *et al.* (*Radiology* 2001)
 - •Bricault et al. (IEEE-TMI 1998)
 - Mori et al. (SPIE Med. Imaging 2001, 2002)
- Electromagnetic Device attached to scope
 - •Schwarz et al. (Respiration 2003)

→ *Our system*: reduce skill variation, easy to use, reduce "blindness"

Our System: Hardware

Software written in Visual C++.

Our System: Work Flow

Data Sources

Stage 1: 3D CT Assessment

- Data Processing
- 1) Segment 3D Airway Tree
- 2) Calculate Centerline Paths
 - 3) Define Target ROI biopsy sites
- 4) Compute polygon data

 \rightarrow Case Study

Stage 2: Live Bronchoscopy

For each ROI:

- 1) Present virtual ROI site to physician
- 2) Physician moves scope "close" to site
- 3) Do CT-Video registration and fusion
- 4) Repeat steps (1-3) until ROI reached

Stage 1: 3D CT Assessment (Briefly)

- 1. Segment Airway tree (Kiraly *et al.*, *Acad. Rad.* 10/02)
- 2. Extract centerlines (Kiraly *et al.*, *IEEE-TMI* 11/04)
- 3. Define ROIs (e.g., suspect cancer)

4. Compute tree-surface polygon data (Marching Cubes – vtk)
 → CASE STUDY to help guide bronchoscopy

Stage 2: Bronchoscopy - Key Step: CT-Video Registration

Register

Virtual 3D CT World

 $I_{CT}^{\chi_i}(x,y)$ (Image Source 1)

To the

Real Endoscopic Video World

 $I_V^F(x, y)$ (Image Source 2)

 \rightarrow *Maximize normalized mutual information to get*

CT-Video Registration: 1) Match viewpoints of two cameras

Both image sources, $I_{\rm V}$ and $I_{\rm CT}$, are cameras.

6-parameter vector representing camera viewpoint $\chi = (X, Y, Z, \alpha, \beta, \gamma)$

3D point $\mathbf{p} = (X_p, Y_p, Z_p)$ mapped to camera point (X_c, Y_c)

through the standard transformation

$$\left[\begin{array}{c}X_c\\Y_c\\Z_c\end{array}\right] = \mathbf{R}(\alpha,\beta,\gamma) \left[\begin{array}{c}X_p - X\\Y_p - Y\\Z_p - Z\end{array}\right]$$

The final camera screen point is given by (x, y) where

$$x = \frac{fX_c}{Z_c}, \quad y = \frac{fY_c}{Z_c}$$

Bronchoscope Video Camera Model

Following Okatani and Deguchi (*CVIU* 5/97), assume video frame I(p)

abides by a Lambertian surface model; i.e.,

$$I(\mathbf{p}) = \sigma \frac{L\cos\theta_s}{\pi R^2}$$

where

 $\mathbf{p} = (X_p, Y_p, Z_p)$

- $\theta_s =$ light source-to-surface angle
- \mathbf{R} = distance from camera to surface point \mathbf{p}

Make FOVs of both Cameras equal

To facilitate registration, make both cameras I_V and I_{CT} have the same FOV.

To do this, use an endoscope calibration technique (Helferty et al., IEEE-TMI 7/01).

Measure the bronchoscope's focal length (done off-line):

$$f = \frac{(x_r - x_l)Z_m}{(X_r - X_l)}$$

Then, the angle subtended by the scope's FOV is

$$heta_{
m FOV} = 2 an^{-1} \left(rac{x_r - x_l}{2f}
ight)$$

Use *same* value for endoluminal renderings, I_{CT} .

Bronchoscope Calibration Device

Endoscope	Olympus BF P200
Pattern size	4.5" x 3"
Dot Diameter	.1"
Grid size	19 x 13
Distance	3"

• Capture known dot pattern.

• Compute Calibration parameters from frame.

Captured Frame

See Helferty et al., IEEE Trans. Med. Imaging, July 2001.

CT (Endoluminal Rendering) Camera Model

Related to video frame model *I*(*p*):

$$I_{CT}(\mathbf{p}) = \frac{(\cos \phi_{\mathbf{p}})^{1/2} \cos \theta_s}{(1 + .0025R^2)} + L_a$$

Use OpenGL

where

 $\mathbf{p} = (X_p, Y_p, Z_p)$

 θ_s = light source-to-surface angle

 θ_p = angle between camera axis and vector pointing toward **p** R = distance from camera to surface point **p** (from range map) L_a = ambient light (indirect lighting)

Normalized Mutual Information

Mutual Information (MI) – used for registering two different image sources:

a) Grimson *et al.* (*IEEE-TMI* 4/96)

b) Studholme *et al.* (*Patt. Recog.* 1/99) \rightarrow <u>normalized MI (NMI)</u>

Normalized Mutual Information

Normalized mutual information (NMI):

$$S_{NMI}(I_V, I_{CT}) = \frac{h(V) + h(CT)}{h(V, CT)}$$

$$h(V) = -\sum_{k=0}^{M-1} \sum_{l=0}^{M-1} p_{V,CT}(k,l) \log p_V(k)$$

$$h(CT) = -\sum_{k=0}^{M-1} \sum_{l=0}^{M-1} p_{V,CT}(k,l) \log p_{CT}(l)$$

$$h(V,CT) = -\sum_{k=0}^{M-1} \sum_{l=0}^{M-1} p_{V,CT}(k,l) \log p_{V,CT}(k,l)$$

where

$$p_V(k) = \sum_{l=0}^{M-1} p_{V,CT}(k,l)$$
 is a histogram (marginal density)

and

CT-Video Registration – Optimization Problem

Given a fixed video frame $I_V^F(x, y)$ and starting CT view $I_{CT}^{\chi_i}(x, y)$

Search for the optimal CT rendering $I_{CT}^{\chi_o}(x, y)$ subject to

$$\chi_o = \arg \left\{ \max_{\chi \in N_{\chi_i}} \left[S_{NMI} \left(I_{CT}^{\chi}(x, y), I_V^F(x, y) \right) \right] \right\}$$

where viewpoint $\chi = (X, Y, Z, \alpha, \beta, \gamma)$ is varied over neighborhood N_{χ_i} about χ_i

Optimization algorithms used: step-wise, simplex, and simulated annealing

Simplex Optimization

A simplex is an N dimensional figure with N+1 vertices

Reflection

Collapse

Collapse Simplex

$$V^{0} = ((X, Y, Z, \alpha, \beta, \gamma))$$

$$V^{1} = ((X + \Delta X, Y, Z, \alpha, \beta, \gamma))$$

$$V^{2} = ((X, Y + \Delta Y, Z, \alpha, \beta, \gamma))$$

$$\vdots$$

$$V^{6} = ((X, Y, Z, \alpha, \beta, \gamma + \Delta \gamma))$$

$$V^* = \frac{2}{N} \sum_{i=0; i \neq i_{HI}}^{N} V^i - V^{i_{HI}}$$

$$V^{**} = \frac{3}{N} \sum_{i=0; i \neq i_{HI}}^{N} V^{i} - 2V^{i_{HI}}$$

$$V^{***} = \frac{1}{2N} \sum_{i=0; i \neq i_{HI}}^{N} V^{i} - \frac{1}{2} V^{i_{HI}}$$
$$V^{i} - \frac{1}{2} V^{i} + \frac{1}{2} V^{i_{LOW}}$$

2

2

CT-Video Registration: Simplex Optimization

Calculate vertices of initial simplex (N=6):

 $\chi_0 = \{X, Y, Z, \alpha, \beta, \gamma\} \text{ (initial viewpoint)}, \chi_1 = \{X + \Delta X, Y, Z, \alpha, \beta, \gamma\}, \dots, \chi_N = \{X, Y, Z, \alpha, \beta, \gamma + \Delta \gamma\} \text{ iteration} = 0$

\mathbf{Do}

Compute $S_{NMI}(\chi_i)$, i = 0, 1, ..., NNote the best and worst vertices and associated NMI measures: $\chi_{min}, \chi_{max}, S_{min}, S_{max}$ Get reflection of χ_{min} across face of simplex: $\chi^* = (\frac{2}{N} \sum_{\chi_i \neq \chi_{min}} \chi_i) - \chi_{min}$ If $(S_{NMI}(\chi^*) > S_{max})$ Get 2× reflection of χ_{min} across face of simplex: $\chi^{**} = (\frac{3}{N} \sum_{\chi_i \neq \chi_{min}} \chi_i) - 2\chi_{min}$ If $(S_{NMI}(\chi^{**}) > S_{max})$ $\chi_{max} = \chi^{**}$ Else $\chi_{max} = \chi^*$

Contract $\chi_{min} \frac{1}{2}$ distance toward face of simplex: $\chi^{***} = (\frac{1}{2N} \sum_{\chi_i \neq \chi_{min}} \chi_i) + \frac{1}{2} \chi_{min}$ If $(S_{NMI}(\chi^{***}) > S_{min}) \quad \chi_{min} = \chi^{***}$ Else contract all vertices $\chi_i \neq \chi_{max} \frac{1}{2}$ distance toward χ_{max} : $\chi_i = \frac{1}{2}(\chi_i + \chi_{max})$ iteration = iteration + 1 While $\{(S_{max} - S_{min}) > \text{TOLERANCE and iteration} < \text{MAX_ITER} \}$

CT-Video Optimization Example

initial p _{v,ct}

Optimal CT Rendering

System Results

- Three sets of results are presented:
- A. Phantom Test controlled test, free of subject motion
- B. Animal Studies controlled in vivo (live) tests
- C. Human Lung-Cancer Patients real clinical circumstances

A. Phantom Test

<u>Goal</u>: Compare biopsy accuracy under controlled stationary circumstances using (1) the standard CT-film approach versus (2) image-guided bronchoscopy.

Experimental Set-up:

<u>Rubber phantom</u> - human airway tree model used for training new physicians.

<u>CT Film</u> - standard form of CT data.

Computer Set-up during Image-Guided Phantom "Biopsy"

Phantom Accuracy Results (6 physicians tested)

Film biopsy accuracy:	5.53mm	Std Dev: 4.36mm
Guided biopsy accuracy:	1.58mm	Std Dev: 1.57mm

Physician	film accuracy (mm)	guided accuracy (mm)
1	5.80	1.38
2	2.73	1.33
3	4.00	1.49
4	8.87	1.60
5	8.62	2.45
6	3.19	1.24

 \rightarrow ALL physicians improved greatly with guidance

 \rightarrow ALL performed nearly the **SAME** with guidance!

B. Animal Studies

<u>Goals</u>: Test the performance of the image-guided system under controlled in vivo circumstances (breathing and heart motion present). <u>Experimental Set-up</u>:

biopsy dart

Computer system during animal test (done in EBCT scanner suite).

Animal Study - Stage 2: Image-Guided Bronchoscopy

Composite View after All Real Biopsies Performed

Rendered view of preplanned biopsy Sites

C. Human Studies

Stage 2: Image-Guided Bronchoscopy

(case h005 [UF], mediastinal lymph-node biopsy, in-plane res. = 0.59mm, slice spacing = 0.60mm)

Animal Study - Stage 1: 3D CT Assessment

Case DC: performing a biopsy

Left view: Real-time bronchoscopic video view; biopsy needle in view
Center: Matching virtual-bronchoscopic view showing preplanned region (green)
Right: Preplanned region mapped onto bronchoscopic view, with biopsy needle in view.
Distance to ROI = scope's current distance from preplanned biopsy site (ROI).

Match Done Match Time = 7.27 sec

Dist to ROI = 40.18 mm

- All nodal-region samples showed normal appearing lymphocytes.
- Subsequent open-lung biopsy showed a suspect mass to be inflammatory tissue.

 \rightarrow 40 lung-cancer patients done to date

Case UF: approaching a biopsy site

Left view: Real-time bronchoscopic video view

- Center: Matching virtual-bronchoscopic view showing preplanned region (blue); red line is preplanned guidance path
- Right: Preplanned region mapped onto real bronchoscopic view.

Distance Measures:

Min Airway to ROI Surface = distance of closest airway surface point to ROI (target lymph node)

Distance to ROI Center

= cursor's current distance from center of preplanned biopsy site (ROI).

Airway Surface

Match Done

= distance of cursor to airway surface

Airway to ROI Surface = distance of airway surface point that cursor is on to ROI

Min. Airway to ROI Surface: 4.3 mm

Dist to ROI Center = 22.21 mm

Airway Surface: 8.7 mm, Airway to ROI Surface: 9.4 mm

Match Time = 16.53 sec

Guidance to Peripheral Lung-Cancer Nodules – In Progress

Real-Time Image-Guided Bronchoscopy – In Progress

Real-Time Image-Guided Bronchoscopy – In Progress

Error = 1.479236

Error = 10414.725680

Comments on System

• Effective, easy to use

→ A technician – instead of \$\$ physician – performs nearly all operations

- Gives a considerable "augmented reality" view of patient anatomy
 → less physician stress
- Fits seamlessly into the clinical lung-cancer management process.
- Appears to greatly reduce the variation in physician skill level.

This work was partially supported by: NIH Grants #CA74325, CA91534, HL64368, and RR11800 Whitaker Foundation, Olympus Corporation Thank You!

- Lung Cancer: #1 cancer killer, 30% of all cancer deaths,
 - 1.5 million deaths world-wide,
 - < 15% 5-year survival rate (nearly the worst of cancer types)
- To diagnose and treat lung cancer,
 - 1) 3D CT-image assessment preplanning, noninvasive
 - 2) Bronchoscopy invasive

→ Procedure is LITTLE HELP if diagnosis/treatment are poor

Normalized Mutual Information

Mutual Information (MI) – used for registering two different image sources:

a) Grimson *et al.* (*IEEE-TMI* 4/96)

b) Studholme *et al.* (*Patt. Recog.* 1/99) \rightarrow <u>normalized MI (NMI)</u>

We use normalized mutual information (NMI) for registration:

$$S_{NMI}(I_V, I_{CT}) = \frac{h(V) + h(CT)}{h(V, CT)}$$

