System for 3D Visualization and Data Mining of Large Vascular Trees

Kun-Chang Yu, Erik L. Ritman, and William E. Higgins

The Pennsylvania State University, University Park, PA 16802 ^{ER}Mayo Foundation, Rochester, MN 55905

SPIE Optics East 2005, Boston, MA 3D TV, Video, and Display IV 23-26 October 2005

Introduction

- X-ray micro-CT and multi-detector helical CT scanners
 - High-resolution 3D digital images of various anatomical tree structures
 - Coronary or hepatic vasculature ($\Delta \sim 20 \mu m$)
 - Airway tree ($\Delta \sim 0.6$ mm or 600μ m)
- Sheer size and complexity of trees
 - Essentially impossible to define them interactively
- Automatic Approaches
 - High percentage of apparently correct branches
 - None guarantee geometrically accurate tree structures

Automatic Approaches

- Image segmentation, thinning and centerline analysis in voxel level (Selle *et al.* 2002, Wan *et al.* 2002, Quek *et al.* 2001, and Yim *et al.* 2000)
- Centerline analysis with junction analysis (Antiga et al. 2004)
- Principle pathway (Karau et al. 2001, Johnson et al. 2000)
- High percentage of apparently correct branches

Output of Automatic Approaches: Imperfect Trees

Our Goal

Develop methods for defining accurate
 3D tree structures and quantitative descriptions

 Use a combination of automated image processing and Computer-based visual interaction

Four-Stage Approach

→ Tree Analyzer

Components of Tree Analyzer

Diagram of Tree Analysis Module

Tree Analysis Module

Interactive Tools for 3D Tree Editing and Analysis

- Integrated with 3D Image-Processing Tools "nv"
- 3D Interactive Rendering System (with Stereo features, etc.)
- Locator Tools
 - Skeleton Picker
 - 3D Site Locator Shooter
 - Intersection-Center Locator
 - 3D Cursor
 - 3D Bounding Box and its 3D Site Locator
- Tree Diagnostician
- Tree Editing Tools

3D Tree Editing Tool Set

- Pruning Tools (Tree deletion, pruning below a branch, etc.)
- Axis smoothing (B-Spline, Hermite Interpolation)
- End-branch Eraser
- Axis Editing
 - Add new sites using locator tools
 - Connect two sites (to add a segment or Interpolation [Hermite])
 - Remove a segment (to break connected sites)
- Tree Refinement using Kiraly's Tools (Centering, Smoothing, Erasing false branches)

Tree Diagnostician

- Detect Possible Tree Defects
- Allow the user to examine the defects and edit

2D Tree Map

- Based on visual data mining
- Interactive and distorting technique
- Visual data exploration to present data in a hierarchical fashion
- Provide zoom in/out and detail-on-demand

Depicting Quantitative Tree Information

Layout of Tree Analyzer

Results for a Complex Junction

with 5 Adjacent Branches

Wan *et al.* (2002 CBM)

Tree Analyzer

Situation where two twisting branches touch each other

Kiraly *et al*. (2003 TMI)

Tree Analyzer

Application for H61

After Tree Editing

- 5 mins
 - Join two trees
 - 3 handle loops
 - Clean mess (e.g., clay)

2D Tree Map (H61)

Before tree editing

After tree editing

Quantitative Measurements for h61 Before tree editing

GenID	NumBr	AvgBrLen	NumGC	AvgCSA	DevCSA	AvgBrCSA	DevBrCSA	AvgSurf	DevSurf	AvgVol	DevVol	Avg2Root	Dev2Root
0	1	4.92	2	340.51	0.81	340.51	0	235.2	0	1224.26	0	0	0
1	2	110.63	70	213.83	3.24	215.5	5.3	5108.86	2235.01	21017.92	8983.2	4.92	0
2	4	54.64	65	106.63	3.59	94.82	51.86	1515.96	1038.57	4586.27	3424.78	115.55	43.13
3	7	87.07	223	69.29	2.81	68.37	42.87	2227.32	1589.32	5532.94	4439.87	167.69	22.67
4	12	59.79	248	45.49	2.29	40.17	29.27	1244.27	1047.85	2491.88	2349.56	260.1	40.87
5	14	41.01	208	39.98	2	28.68	23.2	782.08	1122.35	1496.8	2647.13	289.63	68.58
6	16	32.09	182	35.16	1.62	17.89	18.76	586.7	931.91	1065.83	1947.45	320.43	66.99
7	12	25.06	117	21.41	1.56	15.12	10.78	335.25	321.41	457.47	523.34	356.28	86
8	7	18.39	54	16.35	1.3	15.75	6.35	199.24	143.28	234.22	221.08	326.88	75.54
9	8	15.01	44	11.15	1.55	9.66	6.6	134.18	111.75	138.04	143.52	334.9	65.86
10	4	10.36	13	18.64	1.01	14.83	3.84	122.43	142.07	149.12	189.2	354.18	15.84
11	6	8	25	6.96	0.9	8.81	5.06	48.87	21.94	36.77	15.62	354.1	15.67
12	2	16.6	13	12.11	1.15	10.7	6.13	159.29	92.82	166.29	125.34	346.59	0
13	2	17.37	14	11.34	1.31	10.96	2.62	175.91	44.85	168.56	61.52	367.08	0

After tree editing

GenID	NumBr	AvgBrLen	NumGC	AvgCSA	DevCSA	AvgBrCSA	DevBrCSA	AvgSurf	DevSurf	AvgVol	DevVol	Avg2Root	Dev2Root
0	1	16.58	0	-	-	-	-	-	-	-	-	-	-
1	2	59.34	16	113.35	2.19	210.70	129.81	821.91	586.72	2,399.50	1,175.24	16.58	-
2	4	72.90	90	174.65	2.55	126.24	89.34	2,831.02	2,777.23	10,986.61	11,877.05	75.92	26.77
3	8	45.86	109	74.76	2.80	59.82	50.92	1,052.21	920.59	2,736.47	3,082.78	148.82	33.22
4	14	57.50	277	59.14	2.19	42.35	40.13	1,287.90	1,471.43	2,974.79	4,055.12	195.73	33.40
5	20	42.03	290	40.96	1.96	30.38	25.87	812.61	975.56	1,566.46	2,148.02	273.32	51.65
6	22	28.31	222	38.27	1.71	21.83	21.08	508.82	963.79	966.45	2,221.56	292.46	78.73
7	20	29.76	214	31.84	1.59	17.04	16.68	511.91	851.99	897.92	1,777.77	334.51	84.26
8	10	32.78	131	20.47	1.70	17.56	9.78	441.92	307.63	588.47	514.78	428.69	64.14
9	4	24.02	41	16.84	1.43	16.55	8.27	281.67	134.47	338.33	241.09	404.20	36.50
10	4	14.37	22	12.32	1.20	10.03	9.16	144.29	112.79	162.46	168.62	386.95	6.92
11	4	10.36	13	18.64	1.01	14.83	3.84	122.43	142.07	149.12	189.20	398.42	15.84
12	6	8.00	25	6.96	0.90	8.81	5.06	48.87	21.94	36.77	15.62	398.34	15.67
13	2	16.60	13	12.11	1.15	10.70	6.13	159.29	92.82	166.29	125.34	390.83	-
14	2	17.37	14	11.34	1.31	10.96	2.62	175.91	44.85	168.56	61.52	411.32	-

Analyze (Thinning)

Tree Analyzer

3D Interactive Rendering System

2D Graphics Views (Slicer, Projection)

Tree Diagnostician (Example of a loop)

Fixing the loop

Tree Map

Comparison of Automated Methods

X-furcations

Image Name	Tree Analyzer (Sub-Voxel Level)	Kiraly <i>et al.</i> (2003 TMI) (Sub-Voxel Level)	Analyze TM (Voxel Level)
H61	0	1 trifurcation	N/A
R216-psf020826	0	6 fifth-furcations 19 forth-furcations 192 trifurcations (Total 226 x-furcations)	18 trifurcations
H006_512_85	0	3 trifurcations	N/A

Performance (Time in Second)

Image Name	Tree Analyzer	Kiraly et al. (2003 TMI)			
H61	46.81	115.94			
R216-psf020826	274.97	723.34			
H006_512_85	49.86	94.97			

Discussion

- Contains tools for general 3D automated analysis, 3D visualization, data mining, and quantitative analysis.
- Suited to analyzing images containing large vascular trees.
 Also applied to images of the lungs and airway tree.
- Efficiently diagnose and repair various problems in raw extracted trees.

Acknowledgements

- This work was partially supported by NIH grants #EB000305, #CA74325 and #CA091534.
- Michael Graham helped generate the quantitative results.

nv – General Image-Processing Toolbox

Ten Function Categories

- 1. Workspace: Process two or more images
- 2. Morphology: Binary and gray-scale morphological operations
- 3. Filter: Image-enhancements filters
- 4. Image Manipulation
- 5. Image Segmentation
- 6. Skeleton Manipulation
- 7. Topology: for topological and connected-component analysis
- 8. Turnkey Operation
- 9. System-Base Operation
- 10. 3D Visualization

■ Total: 104 functions

Quantitative Analyses

$$\begin{split} &\Phi_{j,k} \ k \text{th generalized cylinder (GC) of branch} \ b_j \\ &N^b(i) \ \text{number of branches in generation} \ g_i \\ &s_j(t) \ \text{3D coordinates of} \ t \text{th site in branch} \ b_j \\ &N^\Phi(j) \ \text{number of GCs constituting branch} \ b_j \\ &N^s(j) \ \text{number of sites constituting branch} \ b_j \\ &s_{j,k} \ \text{site ID for} \ \Phi_{j,k} \\ &p_i \ \text{starting ID for branches in generation} \ g_i \end{split}$$

GenID	NumBr	AvgBrLen	NumGC	AvgCSA	DevCSA	AvgBrCSA	DevBrC\$A	AvgSurf	DevSurf	AvgVol	DevVol	Avg2Root	Dev2Root
0	1	152.63	27	743.78	9.17	743.78	- 2	14,765.13	-	113,199.67	<u>-</u>	-	-
1	2	89.06	26	326.06	6.22	334.84	22.84	3,890.63	1,682.15	19,762.97	8,015.83	152.63	
2	4	26.94	18	208.34	3.45	186.10	60.27	729.00	684.24	3,087.36	3,384.86	241.70	30.44
3	8	22.91	41	103.24	2.92	100.22	59.49	553.73	271.72	1,593.31	991.69	268.64	22.05
4	16	13.16	45	54.85	1.93	55.44	24.73	185.32	130.83	398.36	328.25	291.55	23.20
5	28	22.06	155	27.16	1.78	26.87	14.55	243.44	175.43	366.63	295.14	311.00	21.75
б	50	22.16	335	16.09	1.47	16.52	8.05	220.61	183.73	255.81	224.18	334.30	24.33
7	56	18.83	317	13.21	1.42	13.22	7.16	176.62	156.20	186.04	172.30	349.89	28.51
8	46	15.48	230	11.80	1.19	11.45	5.09	141.05	128.41	139.41	137.99	376.80	30.29
9	16	25.95	128	14.38	1.39	13.20	6.11	259.02	313.95	282.74	347.28	392.20	32.78
10	8	27.14	75	14.39	1.48	12.61	4.20	305.21	248.45	329.39	275.03	385.67	22.87
11	6	36.68	79	11.10	1.42	10.25	2.38	372.88	276.16	354.97	278.90	393.16	6.66

Comparison to Manual Measurements

- Better linear regression slope
- Better R-squared value