System for 3D Visualization and Data Mining of Large Vascular Trees

Kun-Chang Yu, Erik L. Ritman, and William E. Higgins

The Pennsylvania State University, University Park, PA 16802
ERMayo Foundation, Rochester, MN 55905

SPIE Optics East 2005, Boston, MA
3D TV, Video, and Display IV
23-26 October 2005

Introduction

- X-ray micro-CT and multi-detector helical CT scanners
- High-resolution 3D digital images of various anatomical tree structures
- Coronary or hepatic vasculature ($\Delta \sim 20 \mu \mathrm{~m}$)
- Airway tree ($\Delta \sim 0.6 \mathrm{~mm}$ or $600 \mu \mathrm{~m}$)
- Sheer size and complexity of trees
- Essentially impossible to define them interactively
- Automatic Approaches
- High percentage of apparently correct branches
- None guarantee geometrically accurate tree structures

Automatic Approaches

- Image segmentation, thinning and centerline analysis in voxel level (Selle et al. 2002, Wan et al. 2002, Quek et al. 2001, and Yim et al. 2000)
- Centerline analysis with junction analysis (Antiga et al. 2004)
- Principle pathway (Karau et al. 2001, Johnson et al. 2000)
- High percentage of apparently correct branches

Output of Automatic Approaches: Imperfect Trees

Our Goal

- Develop methods for defining accurate 3D tree structures and quantitative descriptions
- Use a combination of automated image processing and Computer-based visual interaction

Four-Stage Approach

\rightarrow Tree Analyzer

Components of Tree Analyzer

Diagram of Tree Analysis Module

Tree Analysis Module

Interactive Tools for 3D Tree Editing and Analysis

- Integrated with 3D Image-Processing Tools "nv"
- 3D Interactive Rendering System (with Stereo features, etc.)
- Locator Tools
- Skeleton Picker
- 3D Site Locator - Shooter
- Intersection-Center Locator
- 3D Cursor
- 3D Bounding Box and its 3D Site Locator
- Tree Diagnostician
- Tree Editing Tools

3D Tree Editing Tool Set

- Pruning Tools (Tree deletion, pruning below a branch, etc.)
- Axis smoothing (B-Spline, Hermite Interpolation)
- End-branch Eraser
- Axis Editing
- Add new sites using locator tools
- Connect two sites (to add a segment or Interpolation [Hermite])
- Remove a segment (to break connected sites)
- Tree Refinement using Kiraly's Tools (Centering, Smoothing, Erasing false branches)

Tree Diagnostician

- Detect Possible Tree Defects
- Allow the user to examine the defects and edit

2D Tree Map

- Based on visual data mining
- Interactive and distorting technique
- Visual data exploration to present data in a hierarchical fashion
- Provide zoom in/out and detail-on-demand

Depicting Quantitative Tree Information

Local 2D Tree Map

Eile Edit View Global Iools Window Help

$(228,209,189) \quad 40$
5 Image Grayscale （ \odot Skeleton $\checkmark-$ Surface －3D Renderer $\stackrel{\square}{\square}-$ Global －${ }^{-1}$ Nv Script \square Notes File \square（）Quantitative data

Cursor Visibility			
$\square \mathrm{V}$ isible	Color		
$\square \text { Axes } \square \text { Shadows }$	R 区		－
	G［1］	［10	E
\square Outine	B	\square	－
Cursor Location Control			
Precision 1		O None	OX－Y（LockZ）
x ［1］［1］	322.81	Ofocus	Or－Z（LockX）
Y 区⿺辶 m	201.49		O）Z－X（Lock Y）
z 区以	0	Control	lode
		（）Focus	O Window

Bounding Box Properties
\square Visible

> Selection

Inside Only Turn off
Transverse Slice Synchronize

 Slice | | 224.5 | 222 | 464 | Cursor |
| :--- | :--- | :--- | :--- | :--- | Rotatior 3

Horizontal Size $\approx 222 \quad$ Vertical Size ≈ 224.5
Reset Bounding Box Default Picked Branch
6

Site \＃56（228．00，209．00，189．00）$=(40)$
Interior point
Len： $1.86 \mathrm{~mm}(66 \mathrm{ft}) \mathrm{R}$－ $0.020 \mathrm{~mm}(-1.000000 \mathrm{pt})$ Len2begin： 0 daughter（s）， 1 sister（s）
Not in a loop
Tree \＃2： 1887 sites，Len： 2599.07 vox（ 52.3 mm ） © Tracking Direction

Down

Break
VBreak（＊） 10 Voxel 0.20129 mm \square Break 2 trees＊ 10 Voxel 0.20129 mm \square End2End Pt \square End2Interior \square Int2Interior VEnd Branch＊ 10 Voxel 0.20129 mm VIree Size 10 Voxel 0.20129 mm VClose Bifur＊ 10 Voxel 0.20129 mm \square Loop \square－furcation \square site \square Segment © All OSelection Mode（w／＊）Refresh

 TrifurcationMore Trifucation：$(311,144,8)-(T 1+ \pm 0, B \|+41, V \times \pm 2)$ Trifurcation／More Trifucation（ $247,99,165)-(T+\#, B, B+145, V \times 113)$

 Trifurcation／More 4－furcation：（ $277,207,293)$－（Tw2，B＋$+127, V \times \pm 2)$

W
Total： 699 tems

Results for a Complex Junction

 with 5 Adjacent Branches

Situation where two twisting branches touch each other

Kiraly et al.
(2003 TMI)

Tree Analyzer

Application for H61

After Tree Editing

- 5 mins
- Join two trees
- 3 handle loops
- Clean mess (e.g., clay)

2D Tree Map (H61)

Before tree editing

After tree editing

Quantitative Measurements for h61

Before tree editing

GenID	NumBr	AvgBrLen	NumGC	AvgCSA	DevCSA	AvgBrCSA	DevBrCSA	AvgSurf	DevSurf	AvgVol	DevVol	Avg2Root	Dev2Root
0	1	4.92	2	340.51	0.81	340.51	0	235.2	0	1224.26	0	0	0
1	2	110.63	70	213.83	3.24	215.5	5.3	5108.86	2235.01	21017.92	8983.2	4.92	0
2	4	54.64	65	106.63	3.59	94.82	51.86	1515.96	1038.57	4586.27	3424.78	115.55	43.13
3	7	87.07	223	69.29	2.81	68.37	42.57	2227.32	1589.32	5532.94	4439.87	167.69	22.67
4	12	59.79	248	45.49	2.29	40.17	29.27	1244.27	1047.85	2491.88	2349.56	260.1	40.87
5	14	41.01	208	39.98	2	28.68	23.2	782.08	1122.35	1496.8	2647.13	289.63	68.58
6	16	32.09	182	35.16	1.62	17.89	18.76	586.7	931.91	1065.83	1947.45	320.43	66.99
7	12	25.06	117	21.41	1.56	15.12	10.78	335.25	321.41	457.47	523.34	356.28	\$6
8	7	18.39	54	16.35	1.3	15.75	6.35	199.24	143.28	234.22	221.08	326.88	75.54
9	8	15.01	44	11.15	1.55	9.66	6.6	134.18	111.75	138.04	143.52	334.9	65.86
10	4	10.36	13	18.64	1.01	14.83	3.84	122.43	142.07	149.12	189.2	354.18	15.84
11	6	8	25	6.96	0.9	8.81	5.06	48.87	21.94	36.77	15.62	354.1	15.67
12	2	16.6	13	12.11	1.15	10.7	6.13	159.29	92.82	166.29	125.34	346.59	0
13	2	17.37	14	11.34	1.31	10.96	2.62	175.91	44.85	168.56	61.52	367.08	0

After tree editing

| GenID | NumBr | AvgBrLen | NumGC | AvgCSA | DevCSA | AvgBrCSA | DevBrCSA | AvgSurf | DevSurf | AvgVol | DevVol | Avg2Root | Dev2Root |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 16.58 | 0 | - | - | - | - | - | - | - | | | |
| 1 | 2 | 59.34 | 16 | 113.35 | 2.19 | 210.70 | 129.81 | 821.91 | 586.72 | $2,399.50$ | $1,175.24$ | 16.58 | |
| 2 | 4 | 72.90 | 90 | 174.65 | 2.55 | 126.24 | 89.34 | $2,831.02$ | $2,777.23$ | $10,986.61$ | $11,877.05$ | 75.92 | 26.77 |
| 3 | 8 | 45.86 | 109 | 74.76 | 2.80 | 59.82 | 50.92 | $1,052.21$ | 920.59 | $2,736.47$ | $3,082.78$ | 148.82 | 33.22 |
| 4 | 14 | 57.50 | 277 | 59.14 | 2.19 | 42.35 | 40.13 | $1,287.90$ | $1,471.43$ | $2,974.79$ | $4,055.12$ | 195.73 | 33.40 |
| 5 | 20 | 42.03 | 290 | 40.96 | 1.96 | 30.38 | 25.87 | 812.61 | 975.56 | $1,566.46$ | $2,148.02$ | 273.32 | 51.65 |
| 6 | 22 | 28.31 | 222 | 38.27 | 1.71 | 21.83 | 21.08 | 508.82 | 963.79 | 966.15 | $2,221.56$ | 292.16 | 78.73 |
| 7 | 20 | 29.76 | 214 | 31.84 | 1.59 | 17.04 | 16.68 | 511.91 | 851.99 | 897.92 | $1,777.77$ | 334.51 | 84.26 |
| 8 | 10 | 32.78 | 131 | 20.47 | 1.70 | 17.56 | 9.78 | 441.92 | 307.63 | 588.47 | 514.78 | 428.69 | 64.14 |
| 9 | 4 | 24.02 | 41 | 16.84 | 1.43 | 16.55 | 8.27 | 281.67 | 134.47 | 338.33 | 241.09 | 404.20 | 36.50 |
| 10 | 4 | 14.37 | 22 | 12.32 | 1.20 | 10.03 | 9.16 | 144.29 | 112.79 | 162.46 | 168.62 | 386.95 | 6.92 |
| 11 | 4 | 10.36 | 13 | 18.64 | 1.01 | 14.83 | 3.84 | 122.43 | 142.07 | 149.12 | 189.20 | 398.42 | 15.84 |
| 12 | 6 | 8.00 | 25 | 6.96 | 0.90 | 8.81 | 5.06 | 48.87 | 21.94 | 36.77 | 15.62 | 398.34 | 15.67 |
| 13 | 2 | 16.60 | 13 | 12.11 | 1.15 | 10.70 | 6.13 | 159.29 | 92.82 | 166.29 | 125.34 | 390.83 | - |
| 14 | 2 | 17.37 | 14 | 11.34 | 1.31 | 10.96 | 2.62 | 175.91 | 44.85 | 168.56 | 61.52 | 411.32 | - |

Analyze (Thinning)

Tree Analyzer

3D Interactive Rendering System

2D Graphics Views (Slicer, Projection)

Tree Diagnostician (Example of a loop)

Fixing the loop

8. case1 - Tree Analyzer \quad -

Eile Edit View Global Tools Window Help

- Show Selected

Type	Intomation
Short branch	Tr\#0, Br\#1992 (Length

3D Rendering Properties

- C

BranchiDs (in Tr\#0): 2153, 2154, 2155, 2157, 2158
BranchlDs (in Tr\#0): 2362, 2363, 2365, 2366, 2367, 2368, 2370, 2371, 2549 BranchlDs (in Tr\#0): 2366, 2367, 2368, 2370, 2550

Tree Map

85: case_final_fixed - Tree Analyzer
Eile Edit Yiew Global Iools Window Help

Comparison of Automated Methods

X-furcations

Image Name	Tree Analyzer (Sub-Voxel Level)	Kiraly et all. (2003 TMI) (Sub-Voxel Level)	Analyze TM (Voxel Level)
H61	0	1 trifurcation	N/A
R216-psf020826	0	6 fifth-furcations 19 forth-furcations 192 trifurcations (Total 226 x-furcations)	18 trifurcations
H006_512_85	0	3 trifurcations	N/A

Performance (Time in Second)

Image Name	Tree Analyzer	Kiraly et al. (2003 TMI)
H61	46.81	115.94
R216-psf020826	274.97	723.34
H006_512_85	49.86	94.97

Discussion

- Contains tools for general 3D automated analysis, 3D visualization, data mining, and quantitative analysis.
- Suited to analyzing images containing large vascular trees. Also applied to images of the lungs and airway tree.
- Efficiently diagnose and repair various problems in raw extracted trees.

Acknowledgements

- This work was partially supported by NIH grants \#EB000305, \#CA74325 and \#CA091534.
- Michael Graham helped generate the quantitative results.

Thank you!

nv - General Image-Processing Toolbox

- Ten Function Categories

1. Workspace: Process two or more images
2. Morphology: Binary and gray-scale morphological operations
3. Filter: Image-enhancements fillters
4. Image Manipulation
5. Image Segmentation
6. Skeleton Manipulation
7. Topology: for topological and connected-component analysis
8. Turnkey Operation
9. System-Base Operation
10. 3D Visualization

- Total: 104 functions

Quantitative Analyses

g_{i} ith generation
b_{j} jth branch

$\Phi_{j, k}$ kth generalized cylinder (GC) of branch b_{j}
$N^{b}(i)$ number of branches in generation g_{i}
$s_{j}(t) 3 \mathrm{D}$ coordinates of the site in branch b_{j}
$N^{\Phi}(j)$ number of GCs constituting branch b_{j}
$N^{9}(j)$ number of sites constituting branch b_{j}
$s_{j, k}$ site ID for $\Psi_{j, k}$
p_{i} starting ID for branches in generation g_{i}

GeniD	NumBr	AvgBrLen	NumCC	AvgCSA	DevcsA	AvgBrCSA	DevBrcsA	AvgSurf	DevSurt	AvgVol	DewVol	Avg2Root	Dev2Root
0	1	152.63	27	743.78	9.17	743.78	-	14,765.13	-	113,199.67	-	-	-
1	2	89.06	26	326.06	6.22	334.84	22.84	3,890.63	1,682.15	19,762.97	8,015.83	152.63	-
2	4	26.94	18	208.34	3.45	186.10	60.27	729.00	684.24	3,087.36	3,384.86	241.70	30.44
3	8	22.91	41	103.24	2.92	100.22	59.49	553.73	271.72	1,593.31	991.69	268.64	22.05
4	16	13.16	45	54.85	1.93	55.44	24.73	185.32	130.83	398.36	328.25	291.55	23.20
5	28	22.06	155	27.16	1.78	26.87	14.55	243.44	175.43	366.63	295.14	311.00	21.75
6	50	22.16	335	16.09	1.47	16.52	8.05	220.61	183.73	255.81	224.18	334.30	24.33
7	56	18.83	317	13.21	1.42	13.22	7.16	176.62	156.20	186.04	172.30	349.89	28.51
8	46	15.48	230	11.80	1.19	11.45	5.69	141.05	128.41	139.41	137.99	376.80	30.29
9	16	25.95	128	14.38	1.39	13.20	6.11	259.02	313.95	282.74	347.28	392.20	32.78
10	8	27.14	75	14.39	1.48	12.61	4.20	305.21	248.45	329.39	275.03	385.67	22.87
11	6	36.68	79	11.10	1.42	10.25	2.38	372.88	276.16	354.97	278.90	393.16	6.66

Comparison to Manual Measurements

- Better linear regression slope
- Better R-squared value

