QUICKSEE:
Virtual-Endoscopic System for Interactive Navigation and Detailed Quantitation

William E. Higgins,1,2 Krishnan Ramaswamy,1
Geoffrey McLennan,2 Eric A. Hoffman,2 Roderick Swift1

1Penn State University, University Park, PA 16802
2University of Iowa, Iowa City, IA 52246

RSNA '96 -- infoRAD, Chicago, IL, 1 December 1996
Acknowledgments:

Research supported by grants from:

- Whitaker Foundation --- Biomedical Engineering Grant
- National Cancer Institute of the NIH, grant CA53607.
- NSF --- Biological Instrument Devel., grant BIR9317816
infoRAD Exhibit Goals:

1. Appreciate virtual endoscopy's potential for 3D thoracic image assessment
infoRAD Exhibit Goals:

2. Understand the “enhanced awareness” afforded by virtual endoscopy over traditional endoscopy
infoRAD Exhibit Goals:

3. Realize need for *automatic image analysis* to make virtual endoscopy truly useful
QUICKSEE: virtual-endoscopic software system

1. 3D thoracic analysis
QUICKSEE: virtual-endoscopic software system

2. Provides many *pictorial* and *quantitative* tools:

 a. Visualize airways

 b. Get measurements (cross-sectional area)
QUICKSEE:
virtual-endoscopic software system

3. Automatic or manual navigation

a. use automatically computed paths

b. create one yourself
Virtual Endoscopy --- Idea

- Input a high-resolution 3D radiologic image
 - virtual copy of anatomy

- Use computer to explore virtual anatomy
 - permits unlimited navigation exploration
QUICKSEE --- basic operation

1. Load:
 - 3D radiologic image
 - (optional) 3D path data
QUICKSEE --- basic operation

2. Automatic Mode:
 - Automatically compute:
 - paths (axes)
 - extracted regions (airways)
QUICKSEE --- basic operation

3. Interactive Mode:
 - View, Edit, Create paths
 - View structures; get quantitative data
Case 1:
Dog Lung
1. View automatically computed airway axes on reference projections.

Case 1: Dog Bronchial Tree
2. See Virtual Endoscopic View and 2D Slices.

Case 1:
Dog Bronchial Tree
3. See quantitative data and local 2D cross-sections.

Case 1: Dog Bronchial Tree
4. See Oblique slices along airway.

Case 1: Dog Bronchial Tree
5. See plot of lumen diameter along airway extent.

Case 1: Dog Bronchial Tree
6. See a straightened “Tube View” along airway.

Case 1:
Dog Bronchial Tree
7. See Virtual Endoscopic movie along airway.

Case 1:
Dog Bronchial Tree
8. MPEG recording of Virtual Endoscopic movie along airway.

Case 1: Dog Bronchial Tree
Example 2:
Lung Cancer Patient
1. Get automatically computed paths.

Case 2: Lung Cancer Patient
2. See lumen diameter along airway path.
3. View straightened “Tube View” along airway.

Note severe narrowing due to cancer.

Case 2:
Lung Cancer Patient
4. View oblique slices along airway.

Case 2: Lung Cancer Patient
5. See local cross-sections at cancer site.

Note severe narrowing
due to cancer.

Case 2:
Lung Cancer Patient
6. See global 2D slice at cancer site.

Note severe narrowing due to cancer.

Case 2: Lung Cancer Patient
7. See Endoscopic Movie along diseased airway.

Case 2: Lung Cancer Patient
Case 2: Lung Cancer Patient
Case 3:
Healthy Human Complete Lung Scan
1. Get automatically computed paths.

Case 3: Healthy Human
2. See Tube View along airway.

Case 3: Healthy Human
3a. View 2D Global Slices at a site

Case 3: Healthy Human
3b. View 2D Global Slices at a site

Coronal...
3c. View 2D Global Slices at a site

Case 3: Healthy Human
4. If desired, navigate through lungs yourself!