Toward Reliable Multi-generational Analysis of Anatomical Trees in 3D High-resolution CT Images

Kun-Chang Yu, Erik L. Ritman, Attila P. Kiraly, Shu-Yen Wan, Mair Zamir, and William E. Higgins

The Pennsylvania State University, University Park, PA 16802 USA
ERMayo Foundation, Rochester, MN 55905 USA
SWChang Gung University, Taoyuan 333, Taiwan
MZUniversity of Western Ontario, London, Ontario, Canada N6A 5B7

SPIE Medical Image 2003, San Diego, CA
February 18, 2003
Outline

- Introduction
- Methods: 3-Stage approach
- Experimental results
- Conclusion
Introduction

- High-resolution X-ray micro-CT scanner and Multi-detector helical CT scanner
 - High-resolution 3D digital images of various anatomical tree structures
 - Coronary or hepatic vasculature
 - Airway tree

- Sheer size and complexity of these trees
 - Essentially impossible to define them interactively

- Automatic Approaches
 - Principle pathway (Karau et al. 2001, Johnson et al. 2000)
 - High percentage of apparently correct branches

 - None of them, however, guarantee geometrically accurate tree structures
Output of Automatic Approaches: Imperfect Trees

- Branches are missed
- Branches break, creating overly short branches and forming new false branches
- Extra spurious branches arise, causing false bifurcations
- Anatomically implausible loops occur
Interactive System: Tree Analysis Module for Analyze 4.0

- Segmentation (Single Threshold)
- Image Projection (Rendering)
- Labeling
- Action
 - Group 1 (Rendering) - Rotate, Scale, Translate, Select
 - Group 2 (Tree Editing Tools) – Set Root, Combine Trees, Split Tree, Delete Branch, Delete Point, Add Point, Insert Point, and Move Point.

- Map

Rendering and Editing

Map
The goal of this paper

- Develop methods for defining accurate 3D tree structures and accompanied quantitative descriptions.

- Satisfy the following requirements to be useful
 - Reasonable amount of human interaction
 - Computationally efficient
 - Function effectively over a wide range of anatomical and data variations
Basic Philosophy

- Unrealistic to rely on improved scanning technology and automated algorithms for defining a tree

- But, automated techniques are vitally necessary

- Judicious human interaction is essential
Three-stage approach

- Stage 1 – Apply an automated technique to produce a segmented tree and an associated tree description
- Stage 2 – Analyze the automatically defined tree to identify possible errors
- Stage 3 – Use a series of interactive tools to examine and correct identified errors
Stage 1: Define the Raw Tree (Wan, TMI 9/2000)
Stage 2: Identify Possible Tree Errors using Tree Diagnostician

<table>
<thead>
<tr>
<th>Branches are missed</th>
<th>Short end branch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branches break</td>
<td>Branches break in a same tree</td>
</tr>
<tr>
<td></td>
<td>Branches break between two trees</td>
</tr>
<tr>
<td>Small Trees</td>
<td>Short end branch</td>
</tr>
<tr>
<td>Spurious branches</td>
<td>Short end branch</td>
</tr>
<tr>
<td>Anatomically implausible loops occur</td>
<td>Loop</td>
</tr>
<tr>
<td></td>
<td>Close bifurcation</td>
</tr>
<tr>
<td></td>
<td>Trifurcation</td>
</tr>
</tbody>
</table>

The Tree Diagnostician interface shows various types of errors with corresponding measurements and options for selecting and marking.

List:
- Break (*): 2, Voxel(s): 0.04 mm
- Breaks btw 2 trees (*): 10, Voxel(s): 0.1 mm
- End to End Point: 2 Interior: 2 Interior
- Short End-branch (*): 1, Voxel(s): 0.02 mm
- Small Tree: 10, Voxel(s): 0.2 mm
- Close Bifurcation (*): 2, Voxel(s): 0.04 mm
- Loop: 1, Voxel(s): 0.02 mm
- Trifurcation/More (*): 1, Voxel(s): 0.04 mm
- Mark Point: 2, Segment: 2

Errors:
- Close bifurcation Trif: 3 (Length: 1.4124)
- Close bifurcation Trif: 3 (Length: 1.7306)
- Close bifurcation Trif: 3 (Length: 1.4124)
- Close bifurcation Trif: 3 (Length: 1.7306)
- Trifurcation/More Trif: 3 (Length: 1.4124)
- Trifurcation/More Trif: 3 (Length: 1.7306)
- Trifurcation/More Trif: 3 (Length: 1.4124)
- Trifurcation/More Trif: 3 (Length: 1.7306)
- Trifurcation/More Trif: 3 (Length: 1.4124)
- Trifurcation/More Trif: 3 (Length: 1.7306)
- Short Tree Trif: 3 (Length: 99.3991)
- Short Tree Trif: 3 (Length: 2)
- Short Tree Trif: 3 (Length: 6.6698)
- Short Tree Trif: 3 (Length: 7.7007)
- Short Tree Trif: 3 (Length: 5.4041)
Stage 3: Examine and Correct Tree Errors

Tools built for interrogation/correction process:

- 3D rendering system
- Locator Tools
 - Skeleton Picker
 - 3D Site Locator – Shooter
 - Intersection-Center Locator
 - 3D Cursor
- Site Bounding Box
- Editing Tools
- 2D Tree Map
3D Rendering System

- Surface and skeleton displayed

- Rotate, transpose and zoom in/out using rendering control
Locator Tool 1 - Skeleton Picker
Four visualization modes for picker control
Locator Tool 2 - 3D Site Locator (Shooter)

Projected Site

Site

Center of Projection Plane

Shooter (Projected line)

Focal Point

Move/Rotate Camera
Locator Tool 3 - Intersection Center

The projection of the intersection center

Site is the center of intersection area of a projected line with segmented image

Projected line

First intersection area

Focal Point
Locator Tool 4 - 3D Cursor
Site Bounding Box
Tree Editing Tools

- Skeleton Editor – enables point and connection editing
- Point Editor – allows the addition or removal of specific skeletal points
- Connection Editor – line segments can be deleted or added
- Tree root selection and tree pruning
2D Tree Map
Zoom in/out and Detail-on-demand
Example of loop editing

(b) connected-branch case

(c) refined skeleton

(d) shared-branch case

(e) refined skeleton
Experimental Results - Control2 case (Hepatic vasculature)
A close look at Control2 case
Control2: Problems eliminated
(list in Tree Diagnostician)

- Took two hours of user interaction
- Number of generations increased from 14 (previous work) to 25

<table>
<thead>
<tr>
<th>Error</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch Breaks</td>
<td>60</td>
</tr>
<tr>
<td>Trifurcations</td>
<td>5</td>
</tr>
<tr>
<td>Loops</td>
<td>5</td>
</tr>
<tr>
<td>Small Trees</td>
<td>31</td>
</tr>
</tbody>
</table>
Experimental Results – H61 case

(a)
(b)
H61: Problems eliminated
(list in Tree Diagnostician)

- Took two more hours of user interaction
- Number of generations 15
- Computer identified extra branches at generations 12-15 that the human did not measure

<table>
<thead>
<tr>
<th>Error</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifurcations</td>
<td>12</td>
</tr>
<tr>
<td>Loops</td>
<td>14</td>
</tr>
<tr>
<td>Small Trees</td>
<td>1</td>
</tr>
</tbody>
</table>
2D Tree Map of H61
Conclusion

- Complete procedure for defining correct branching-tree structure in large 3D CT image

- Graphical tools allow user to interrogate and fix tree defects

- Enable precise geometric tree definition, so that quantitative assessments can be made.

- A more systematic use of tools is required

- Semi-automatic tools are vital to speed up the interactive process

Acknowledgements

This work was partially supported by NIH grants #EB00305 and #CA74325 and CA91534.