3D Human Airway Segmentation for Virtual Bronchoscopy

Atilla P. Kiraly,1 William E. Higgins,1,2 Eric A. Hoffman,2 Geoffrey McLennan,2 and Joseph M. Reinhardt2

1Penn State University, University Park, PA 16802
2University of Iowa, Iowa City, IA 52246

SPIE Medical Imaging 2002, San Diego, CA, 24 February 2002
Outline

1. Introduction
2. Method
3. Segmentation Results
4. Virtual Bronchoscopy Applications
Introduction

• New 3D CT Images can be large: 512 X 512 X 400
 – Partial volume effects
 – Reconstruction artifacts
 – Patient breathing artifacts

• Airway segmentation necessary for Virtual Bronchoscopy
 – Path planning, rendering, quantitative analysis

* Manual segmentation not an option
Previous Research

1. Knowledge-based

2. Central-axis analysis

3. 3D Region growing (RG) → not robust
 - K. Mori et al., *13th ICPR*, 1996

4. Mathematical morphology → too slow
Proposed Hybrid Approach

- Combines 3D RG and Morphology based methods
- Use filtering to improve robustness of both methods
- Use results of 3D RG to reduce application area of the larger operators in the Morphology method
- Order of magnitude improvement in execution time
3D Airway Segmentation Overview

3D image I → Optional Filter → Modified 3D Region Growing

Optional Filter → Lung Region Definition

Lung Region Definition → Morphology

Morphology → 2D Candidate Labeling

2D Candidate Labeling → 3D Reconstruction

3D Reconstruction → Airway Segmentation I_S
3D Airway Segmentation Overview

3D image I → Lung Region Definition → Modified 3D Region Growing

- Morphology
- 2D Candidate Labeling
- 3D Reconstruction

Airway Segmentation I_S

$W_i \in \{1, \ldots, Z\text{size}\}$
Optional Pre-Filtering of the Data

PURPOSE:

1. 3D RG can successfully complete without parenchymal leakage
2. Can help reduce false candidates in morphology method

COST:

Lose some peripheral branches

METHODS:

4-connected or 3 X 3 Median filter applied to each slice on 2D basis
3D Airway Segmentation Overview

3D image I

Optional Filter

Lung Region Definition

Morphology

2D Candidate Labeling

3D Reconstruction

Airway Segmentation I_S

$W_{\mathcal{L}}$

$W_i \forall i \in \{1, \ldots, \text{Zsize}\}$
Modified Adaptive 3D Region Growing

3D Region Growing
Seed = s
Threshold = T

Volume < Explosion

If Yes, go to Post Processing
If No,

T = T - 1

3D Region Growing

T = T + 1
Post Processing

PURPOSE:

1. RG result contains cavities due to noisy data
2. Edges of segmentation can be very rough

METHOD:

Cavity deletion and binary closing of RG segmentation
3D Airway Segmentation Overview

3D image I → Optional Filter → Modified 3D Region Growing

Optional Filter

Morphology

2D Candidate Labeling

3D Reconstruction

Airway Segmentation I_S

W_{\perp}

$W_i^\perp, i \in \{1, \ldots, Z_{\text{size}}\}$
3D Airway Segmentation Overview

3D image I → Optional Filter → Modified 3D Region Growing

- Lung Region Definition
- Optional Filter
- W_L
- $W^i_R \ i \in \{1, \ldots, \text{Zsize}\}$
- Airway Segmentation I_S
Morphology-Based Segmentation

Two-Step Process

1. 2D Candidate Labeling
 - Identify potential airways on a 2D basis
 - Uses gray-scale reconstruction with different operators

2. 3D Reconstruction

HYBRID:

Use results of 3D RG and Lung Region Definition to limit application area of step 1
2D Candidate Labeling

Basis Operator

\[B_4^1 \]

\[B_4^b = bB_4 = B_4 \oplus B_4 \oplus \cdots \oplus B_4 \]

(b−1) dilations

b^{th} order homothetic operators
2D Candidate Labeling

1. Sample and threshold slice \(z \) from Image \(I \)

\[
S(x, y) = I(x, y, z) \text{ if } I(x, y, z) \leq 0 \quad \text{else} \quad 0
\]
2D Candidate Labeling

2 Perform gray-scale closing with operator of size b

$$J^b_1 = S \bullet B^b_4 = (S \oplus B^b_4) \ominus B^b_4$$

3 Erode image and take maximum with original

$$J^b_{k+1} = \max(J^b_k \ominus B^1_4, S)$$

4 Repeat above step until max no longer involves S
2D Candidate Labeling

5. Threshold result into binary image C

$$C^b(x, y) = 1 \text{ if } J^b(x, y) - S \geq \text{Threshold}, 0 \text{ otherwise}$$

6. Union of results for all b determines candidate locations

$$C(x, y) = \bigcup_{b=1}^{M} C^b(x, y)$$
3D Airway Segmentation Overview

3D image I → Optional Filter → Modified 3D Region Growing → Lung Region Definition → Morphology → 2D Candidate Labeling → Airway Segmentation I_S

- Optional Filter
- Lung Region Definition
- Morphology
- 2D Candidate Labeling
- Airway Segmentation I_S

W_L and W_{iR}, $i \in \{1, \ldots, Z\text{size}\}$
3D Reconstruction

• PURPOSE: Determine valid candidates to form final result

• METHOD:
 • Closed space dilation with unit kernel radius
 • 3D 6-connected region growing
Results: case h006

- Morphology method failed
- Different branches segmented
- No filtering used

Case h006: 512X512X574 287MB (0.72mm X 0.72mm X 0.60mm)
Results: case h007

- 4-connected median filter
- 3D RG and Morphology methods show leakage

Case h007: 512X512X488 244MB (0.65mm X 0.65mm X 0.60mm)

Case h007_512_85, root site=(266,221,0), segre=(RegGrow,star median,explode at T=50000)
Results: case h007

Tree Renderings

- 4-connected median filter
- 3D RG and Morphology methods show leakage

Case h007: 512X512X488 244MB (0.65mm X 0.65mm X 0.60mm)

Case h007_512_85, root site=(266,221,0), seger=(RegGrow,star median,explode at T=50000)
Results: case h008

- Only hybrid method succeeded
- No filtering used

Case h008: 512X512X389 194MB (0.59mm X 0.59mm X 0.06mm)
Segmentation Time Results

<table>
<thead>
<tr>
<th>Method</th>
<th>Labelingseconds</th>
<th>Reconstructionseconds</th>
<th>Totalseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D RG</td>
<td>N.A.</td>
<td>N.A.</td>
<td>64</td>
</tr>
<tr>
<td>Hybrid</td>
<td>1700</td>
<td>1580</td>
<td>3280</td>
</tr>
<tr>
<td>Morphology</td>
<td>15380</td>
<td>3200</td>
<td>18580</td>
</tr>
</tbody>
</table>

Hybrid demonstrates 10X improvement in labeling time
Edge Localization

- Segmented by both RG and Hybrid methods
- Segmented by Hybrid method only

Hybrid method demonstrates better edge localization
H012 case: papilloma

Hybrid and Morphology method fail in capturing papilloma
Virtual Bronchoscopy Applications

1. Airway Analysis
2. Peripheral Nodule Biopsy
3. Mediastinal Lymph-Node Biopsy

Use the Virtual Navigator.

- Sherbondy et al., SPIE Medical Imaging 2000, vol. 3978
- Helferty et al., SPIE Medical Imaging 2001, vol. 4321
- Helferty et al., ICIP 2002
Virtual Navigator: architecture

Data Sources

Image Processing Analysis

HTML Multimedia Case Report

Stage 1: 3D CT Assessment
- Identify Target ROI Sites
- Segment Airway Tree
- Calculate Centerline Paths
- Virtual Endoluminal Movies
- Cross-Section Area Calculations
- Volume Slices, Slabs, Projections

Stage 2: Live Bronchoscopy
- Capture Endoscope Video
- Correct Barrel Distortion
- Interactive Virtual Views
- Register Virtual CT to Video
- Draw Target Regions on Video

Outputs
- ROI List
- Segmented Airway Tree
- Centerline Paths
- Screen Snapshots
- Recorded Movies
- Physician Notes
The system resides on a standard Windows-based PC. A Matrox video card serves as the interface between the PC and the videobronchoscope. The main software system, written in Visual C++, can run on an inexpensive laptop computer.
Airway Analysis (work in progress)

Case h16_512_85, root site=(263,233,45), seger=(RegGrow, star median, explode at T=50000)
Peripheral Nodule Biopsy (work in progress)
VB-Guided Mediastinal Lymph-Node Biopsy

1. Human Study underway

2. 29 cases to date (2/2002)

3. VB-Guided approach being compared to standard approach which uses CT film.
Mediastinal Lymph-Node Biopsy (study underway progress)
Conclusion

• Hybrid method
 – Clinically feasible
 – Similar results to Morphology

• No method superior
 – No method consistently recovered more airways
 – Hybrid and Morphology methods localize edges better
 – Only Region Growing succeeded in papilloma case

• Integrated segmentation tool-kit used for VB