Experiments in Virtual-Endoscopic Guidance of Bronchoscopy

James P. Helferty¹
Anthony J. Sherbondy¹
Atilla P. Kiraly¹
Janice Z Turlington¹
Eric A. Hoffman²
Geoffrey McLennan²
William E. Higgins^{1,2}

¹Penn State University University Park, PA 16802 ²University of Iowa Iowa City, IA 52246

SPIE 2001 San Diego, CA 18 February 2001

Introduction

- 1. Overview of virtual bronchoscopy and our system (Virtual Navigator)
- 2. Stage-1 CT-only Pre-Procedure Planning
- 3. Stage-2 Bronchoscopy examples:
 - a. Phantom case
 - b. Animal studies
 - c. Human case

Problem Domain

Endoscopic Lung biopsy often fails.since anatomy not visiblein endoscopic video.

with rendered CT.

➤ Solution: Augment endoscope

<u>Videoendoscopy</u>

Matching Camera Characteristics

Overview of Virtual Navigator

Data Sources

Stage 1: 3D CT Assessment

- Identify Target Sites
- Segment Airway Tree
- Calculate Centerline Path
- Virtual Endoluminal Movies
- Cross-Section Area Calculations
- Volume Slices, Slabs, Projections

Stage 2: Live Bronchoscopy

- Capture Endoscope Video
- Correct Barrel Distortion
- Interactive Virtual Views
- Register Virtual CT to Video
- Draw Target Regions on Video

HTML Multimedia Case Report

Site List Segmented Airway Tree

Centerline Paths

Screen Snapshots Recorded Physician Movies Notes

Proposed Virtual Navigator

- Complete CT examination
- Guide live bronchoscopy
- Automate steps in CT assessment
- Inexpensive, PC-based

Elements of a Case Study

- 1. Data Sources
 - > 3D CT Image
 - Bronchoscopic Video
- 2. Data Abstractions
 - > Root Site
 - Key Sites
 - > Paths
 - > Tree
- 3. Reporting Abstractions
 - Snapshots
 - > Plots
 - > Movies
 - Case Notes
 - > Measurements

Examination Stages

Stage 1: CT Assessment

- 1. Build complete Case Study.
- 2. Compute guidance data.
- 3. View Endoluminal Movies.

Stage 2: Bronchoscopy

- 1. Load Case Study.
- 2. Set up graphical tools.
- 3. Perform virtual-guided bronchoscopy.

Virtual Navigator Tools

Slicer Tools (MPR Views)

Airway Tree Centerlines

Sliding Slab Depth Tools

Virtual Navigator Tools

Cube Tool

3D Surface Tool

Stage 2:

Virtual Guidance of Live Bronchoscopy

Coronal Projection shows extracted airway tree

Virtual data guides airway traversal.

Video Match Tool shows a matched point between

- 1. CT rendering of airway region (ROI rendered)
- 2. LIVE bronchoscope video
- **3.** Corresponding videobronchoscopy (ROI superimposed)

Experimental Results for Three Bronchoscopy Studies

- 1. Phantom
- 2. Animal
- 3. Human

Phantom Experiment

Controlled test using a non*breathing* subject.

Experimental set-up: physician was blind to phantom

Composite View during Phantom Experiment

Numerical Results from Phantom Experiment

	Physician #1 (trial 1)		Physician #1 (trial 2)		Physician #2	
	Distance (mm)	Time sec.	Distance (mm)	Time sec.	Distance (mm)	Time sec.
Average	2.18	12.613	1.73	9.672	2.01	10.91
Std Dev	1.09	8.865	0.97	8.789	0.89	5.325

Note: Distance and time measured to match each ROI target.

Distance measured from line extrapolated from the needle direction to metal bead edge.

Average biopsy error: 1.98 mm

Average match time: 11.065 sec.

Composite View during Animal Experiment

Live bronchoscopy test using a living subject.

Matched video frame with ROI

Registered
virtualshot

Results of Animal Experiment

Darts placed directly above targets as expected.

Note: Snapshots are misaligned to compensate for differing placement during CT scanning.

Planned site from CT analysis.

X=308.00 Y=261.00 Z=0.27 LEVEL=52

Actual site *after dart marker* placement.

Planned site from CT analysis.

Actual site *after dart marker* placement.

Misguidance in Animal Experiment

Darts placed one generation before target due to range ambiguity

Matching view to this ROI target

Note: Snapshots are misaligned to compensate for differing placement during CT scanning.

Stage 2: Live Human Bronchoscopy

Composite View during Human Bronchoscopy

Bronchoscope video matched to rendered CT during live procedure.

Conclusions

- Stage 1 took 5 minutes in experiments.
- Controlled experiment showed accurate biopsies.
- System showed capability in live experiments.
- Bronchoscopic guidance has been improved.
- Further complete human studies to come.

