Improved 3D Live-Wire Method with Application to 3D CT Chest Image Analysis

> Kongkuo Lu and William E. Higgins Penn State University Department of Electrical Engineering University Park, PA 16802, USA

SPIE Medical Imaging 2006: Image Processing, San Diego, CA, 14 Feb. 2006.

Motivation

- > ROI segmentation is important, but difficult
- Manual slice tracing always works
 --but it is time consuming
- Automated segmentation avoids user intervention
 --but it is strongly application dependent
- Semiautomatic methods allow for full user control while reducing human involvement

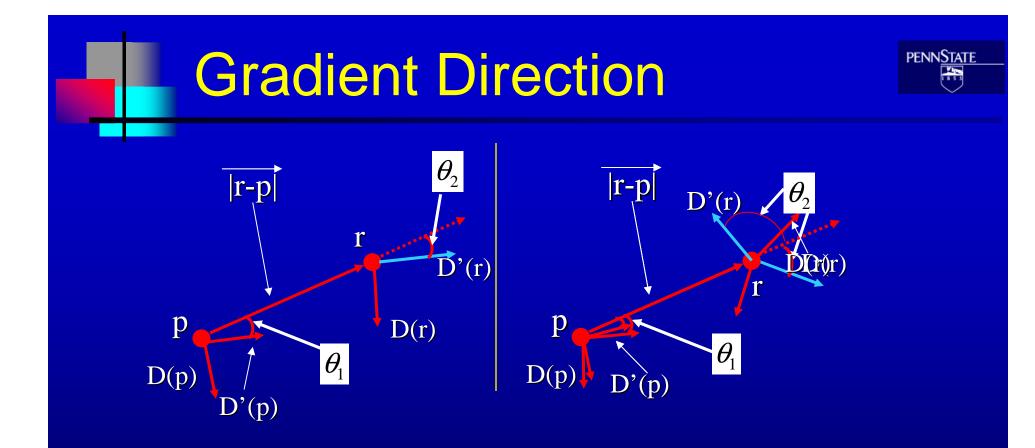
Prior Work

2D Live Wire:

- Mortensen et al. (IEEE Computers in Cardiology 1992)
- Mortensen et al. (Graphical Models and Medical Imaging 1998)

ennState

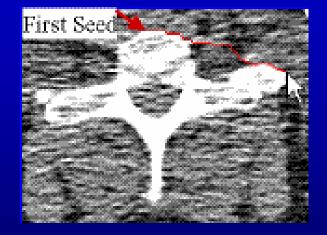
- Falcão et al. (SPIE Medical Imaging 1996)
- Falcão et al. (Graphical Models and Medical Imaging 1998)

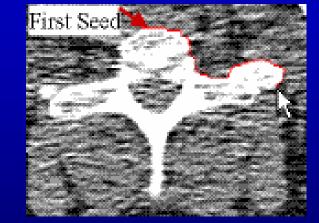

3D Live Wire:

- Falcão et al. (Medical Image Analysis 2000)
- Schenk *et al.* (*MICCAI 2000*)
- Salah et al. (Workshop Bildverarbeitung in der Medizin 2005)
- Hamarneh et al. (SPIE Medical Imaging 2005)
- König et al. (SPIE Medical Imaging 2005)

pennState **Cost Function Image Feature Cost** Laplacian Zero-Crossing f_{Z} **Gradient Magnitude** f_{G} **Gradient Direction** f_{D} f_{Df} Secondary Gradient Direction New Cost! **Cost Function:**

$$l(p,q) = w_z f_z(q) + w_G f_G(q) + w_D f_D(p,q) + w_{Df} f_{Df}(p,q)$$


* Three components were derived from *Mortensen* 98



Gradient Direction: $f_D(p,q) = \frac{2}{3\pi}(\theta_1 + \theta_2)$ New Gradient Direction: $f_{Df}(p,q) = \frac{1}{\pi}(|\theta_1 - \theta_2|)$

Gradient Direction

Live Wire using old cost

Live wire with new cost f_{Df}

2D Graph-Search Algorithm

Input: /* Seed pixel */ s/* Local cost function for link between "p" and "r" */ l(p,r)Data Structures: /* List of active pixels sorted by total cost(initially empty) */ L/* Neighborhood set of "p" (contains 8 neighbors of pixel "p") */ N(p)/* Boolean function indicating if "p" has been processed */ e(p)/* Total cost function from seed point to pixel "p" */ q(p)Output /* Pointers from each pixel indicating the minimum cost path */ ptAlgorithm: 1. $q(s) \leftarrow 0; L \leftarrow s;$ /* Initialize active list with zero cost seed pixel */ While $L \neq \Phi$ do begin /* While still points to expand */ /* remove min cost pixel "p" from active list */ $pt \leftarrow min(L);$ 3. $e(p) \leftarrow TRUE;$ /* Mark "p" as processed */ 4. 5.for each $r \in N(p)$ such that $\neg e(r)$ do begin 6. $gtemp \leftarrow q(p) + l(p, r);$ 7. /* Compute total cost to neighbor */ 8. if $r \in L$ and gtemp < g(r) then 9. $q(r) \leftarrow gtemp; pt(r) \leftarrow p;$ /* Update total cost and set back pointer */ 10.if $r \notin L$ then begin /* If neighbor not in list, assign neighbor's */ 11. $q(r) \leftarrow qtemp; pt(r) \leftarrow p; L \leftarrow r;$ 12./* total cost, set back pointer and */ 13./* place on(or return to) active list */end 14.end 15. end

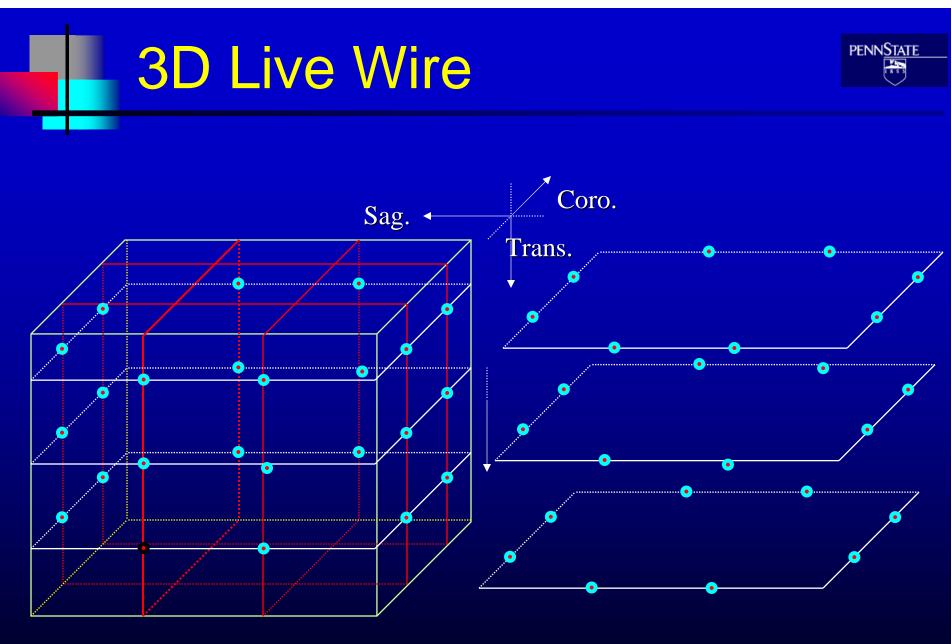
2D graph-search algorithm for the live-wire method

(Modified based on Mortensen 98)

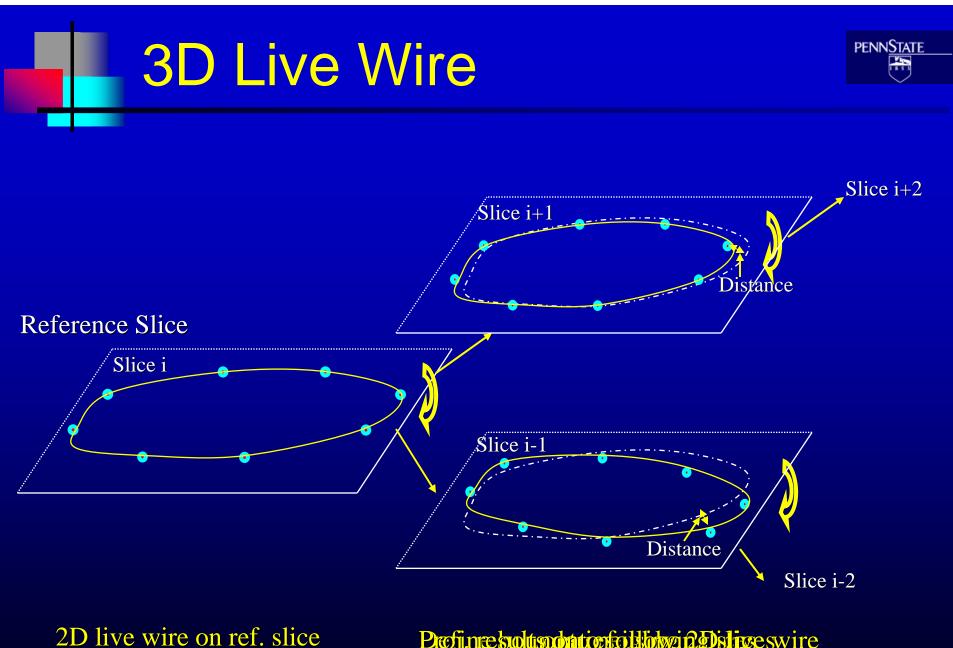
2D Live Wire Introduction

PENNSTATE

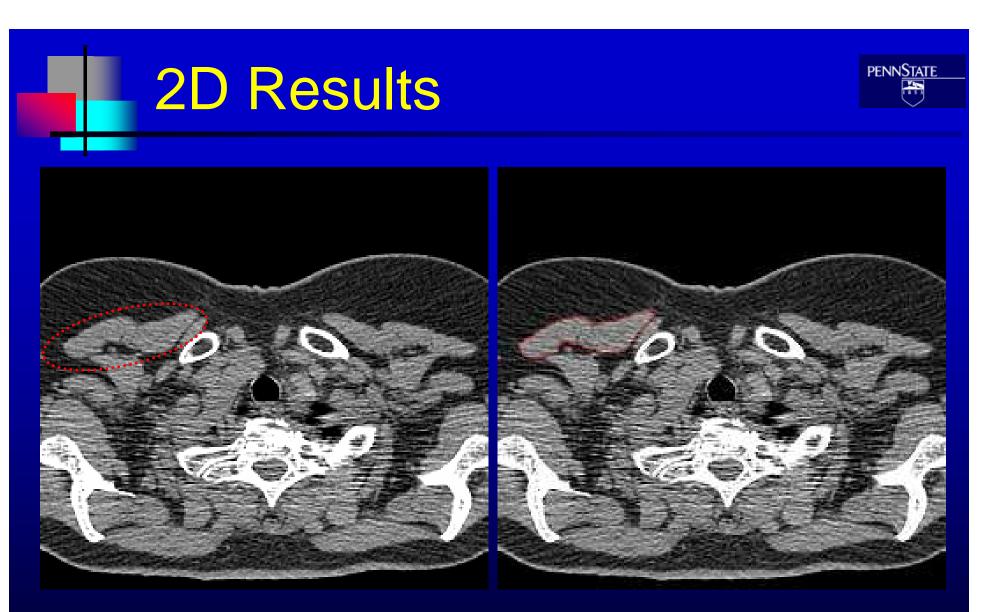
	41	35	30	33						
47	29	25	23	-25						
29	19	174	-19◄	-29						
20	13	164	-29	44						
14		13	19	33	39	62		37	29	, 34
15 —	▲ ♦	▼ ¥ 7 	_ 12	14	24	29	36	27	24	30
16 —	▶9	3	8	4<	8 <	134	-20	194	-22 ←	-33
11 —	► 5 —	0		- 54	-11	13	1 4	-20 ←	-28	40
19	10	8	4	14	15	18	22	-24	29	


* Derived from *Mortensen* 98

2D Live Wire Example



Segment ROI using 2D Live Wire



2D live wire on Sagosdiceiles

Generate geedslone everyisliceaim. Transliciceiction

Darfinæsuolusuobationfrilsbokgin2Dislinæswire

2D ROI

Segmentation result

* Three ROIs used in tests

PENNSTATE

Three Factors: (derived from *Falcão*98, 00)

→ Efficiency -- Processing time to segment an ROI

$$\rightarrow \text{Repeatability} \sim RP_{R_{2}jO_{m}O_{k}E_{n}E_{l}} = 1 - \frac{\left| (B_{R_{2}jO_{m}E_{n}}) \oplus (B_{R_{2}jO_{k}E_{l}}) \right|}{\left| B_{R_{2}jO_{m}E_{n}} \right| + \left| B_{R_{2}jO_{k}E_{l}} \right|}$$
$$\rightarrow \text{Accuracy} \sim AC_{R_{2}jO_{m}E_{n}} = 1 - \frac{\left| (B_{R_{2}jO_{m}E_{n}}) \oplus (G_{2}j) \right|}{\left| B_{R_{2}jO_{m}E_{n}} \right| + \left| G_{2}j \right|}$$

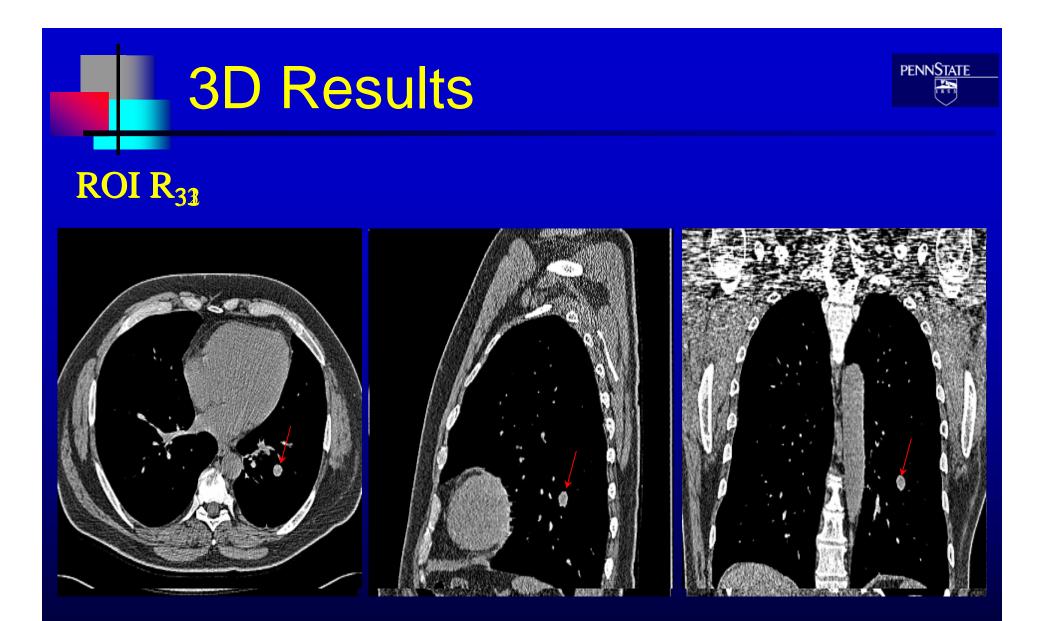
	R_{21}				R_2	2			R_{23}			
	E_1, E_2	E_{1}, E_{3}	E_{2}, E_{3}	Aver.	E_1, E_2	E_{1}, E_{3}	E_2, E_3	Aver.	E_1, E_2	E_{1}, E_{3}	E_{2}, E_{3}	Aver.
O_1	98.25	97.67	98.01	97.98	99.04	99.55	99.24	99.28	97.86	97.72	98.30	97.96
O_2	99.03	98.82	98.29	98.71	99.27	99.53	99.41	99.40	98.57	98.72	99.34	98.88
O_3	96.84	97.92	97.95	97.57	98.31	98.63	98.99	98.64	99.17	98.51	98.24	98.64
O_4	97.84	97.67	98.19	97.90	96.92	97.37	97.65	97.31	98.09	98.32	98.25	98.22
O_5	97.76	97.78	98.45	98.00	98.58	98.97	98.45	98.67	98.31	97.94	97.32	97.86

Segmentation Reproducibilities

	$O_m, O_k \ (m \neq k)$										
	O_1, O_2	O_1, O_3	O_1, O_4	O_1, O_5	O_2, O_3	O_2, O_4	O_2, O_5	O_3, O_4	O_3, O_5	O_4, O_5	Aver.
R_{21}	98.02	97.60	97.92	97.79	98.08	97.66	98.32	97.05	98.10	97.73	97.86
R_{22}	99.30	99.03	98.02	98.86	99.01	98.14	99.04	97.74	98.56	97.89	98.45
R_{23}	97.91	98.22	97.96	97.79	97.77	97.81	98.12	98.34	97.87	97.63	98.02

Inter-Operator Segmentation Reproducibilities

PENNSTATE

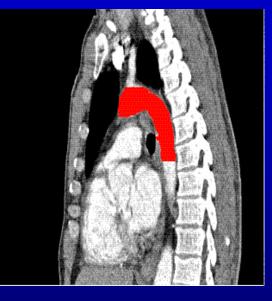

Summary:

	R ₂₁	R ₂₂	R ₂₃
Efficiency	23.4s	13s	18.6s
Repeatability	97.86%	98.57%	98%
Accuracy	98.38%	98.76%	97.68%

Time ratio between manual tracing and 2D live wire:

	R ₂₁	R ₂₂	R ₂₃
2D Live Wire	23.4s	13s	18.6s
Manual Slice Tracing	310s	192s	278s
Time Ratio	13.25	14.77	14.95

* Efficiency comparison based on accuracy higher than 95%



* Three 3D ROIs used in tests

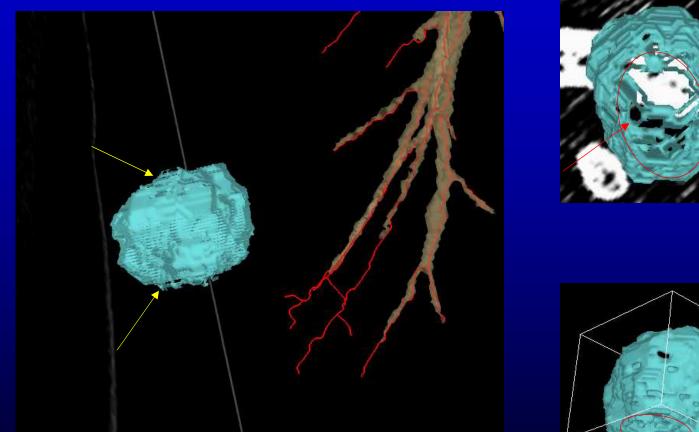
Τ

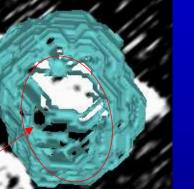
3D Segmentation Results

Summary:

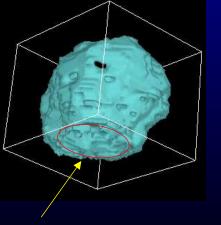
	R ₃₁	R ₃₂	R ₃₃
Efficiency	34s	95s	8m9s
Repeatability	97.64%	97.88%	96.87%
Accuracy	98.08%	98.12%	97.16%

PENNSTATE


Time ratio between 3D live wire and 2D live wire / manual slice tracing:


	R ₂₁	R ₂₂	R ₂₃
2D LW vs. 3D LW	7.2	8.4	9.9
Manual vs. 3D LW	28	56	41

* Efficiency comparison based on accuracy higher than 90%



Comments on 3D Live Wire

Тор view

Bottom view

2D Live Wire:

Introduce new gradient direction cost
 2D live wire works very well

3D Live Wire:

Reliable and efficient

#