Robust System for Human Airway-Tree Segmentation

Michael W. Graham, Jason D. Gibbs, and William E. Higgins

Penn State University Department of Electrical Engineering University Park, PA 16802, USA

SPIE Medical Imaging 2008: Image Processing, San Diego, CA, 19 Feb. 2008.

MDCT scan

Segmented airways

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

MDCT scan

Segmented airways

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

Drawing by Terese Winslow, "Bronchoscopy," *NCI Visuals Online*, National Cancer Institute

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

Drawing by Terese Winslow, "Bronchoscopy," *NCI Visuals Online*, National Cancer Institute

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

Drawing by Terese Winslow, "Bronchoscopy," *NCI Visuals Online*, National Cancer Institute

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

Drawing by Terese Winslow, "Bronchoscopy," *NCI Visuals Online*, National Cancer Institute

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

- Goal: Extract airways from 3D MDCT scan
- Vital step for many applications
- Image-guided bronchoscopy

Gibbs et al., "Integrated System for Planning Peripheral Bronchoscopic Procedures," SPIE 2008: Physiology, Function, and Structure from Medical Images, Sunday Feb. 17

- Stage 1: Global automatic segmentation algorithm
- Stage 2: Local interactive segmentation toolkit

- Stage 1: Global automatic segmentation algorithm
- Stage 2: Local interactive segmentation toolkit

- Stage 1: Global automatic segmentation algorithm
- Stage 2: Local interactive segmentation toolkit

Video—Gen. 8

Automatic Segmentation

Desired view

Automatic Airway Segmentation—Related work

- Region-growing
 - Mori et al. (IEEE-TMI 2000)
 - Summers et al. (Radiology 1996)
 - Kiraly et al. (Acad. Radiology 2002)
- Morphological filtering/reconstruction
 - Fetita et al. (IEEE-TMI 2004)
 - Aykac et al. (IEEE-TMI 2003)
 - Pisupati et al. (Math. Morph. and App. 1996)
- Locally-adaptive approaches
 - Tschirren et al. (IEEE-TMI 2005)
 - Schlathoelter et al. (SPIE Med. Imaging 2002)
 - Mayer et al. (Acad. Radiology 2004)

Focus: Image-guided bronchoscopy to periphery

- Global segmentation
- One critical route

- 1. Conservative segmentation
- 2. Airway section filter
- 3. Branch segment definition
- 4. Branch segment connection
- 5. Global graph partition

- 1. Conservative segmentation
- 2. Airway section filter
- 3. Branch segment definition
- 4. Branch segment connection
- 5. Global graph partition

- 1. Conservative segmentation
- 2. Airway section filter
- 3. Branch segment definition
- 4. Branch segment connection
- 5. Global graph partition

- 1. Conservative segmentation
- 2. Airway section filter
- 3. Branch segment definition
- 4. Branch segment connection
- 5. Global graph partition

- 1. Conservative segmentation
- 2. Airway section filter
- 3. Branch segment definition
- 4. Branch segment connection
- 5. Global graph partition

Step 1: Conservative Segmentation

Step 1: Conservative Segmentation

- Major airways only
- Adaptive region-growing
- Aggressive smoothing—prevent leakage

Step 1: Conservative Segmentation

- Major airways only
- Adaptive region-growing
- Aggressive smoothing—prevent leakage

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Search for peripheral airway signals
- Filter each transverse, coronal, and sagittal slice
- Combine multiple slices for better estimates

- Combine airway sections into branch segments
- Requirements:
 - Airway sections form tubeSegment without leakage
- Retain 1,500 strongest

- Combine airway sections into branch segments
- Requirements:
 - Airway sections form tubeSegment without leakage
- Retain 1,500 strongest

- Combine airway sections into branch segments
- Requirements:
 - Airway sections form tube
 - Segment without leakage
- Retain 1,500 strongest

$$\begin{aligned} \|\overline{\mathbf{c}}_{i} - \overline{\mathbf{c}}_{j}\| &\leq 3\mathrm{mm}, \quad |\mathbf{n}_{i}^{T}\mathbf{n}_{j}| \geq \cos(60^{\circ}), \\ \frac{|\mathbf{n}_{i}^{T}(\overline{\mathbf{c}}_{i} - \overline{\mathbf{c}}_{j})|}{\|\overline{\mathbf{c}}_{i} - \overline{\mathbf{c}}_{j}\|} \geq \cos(60^{\circ}) \quad \mathrm{and} \quad \frac{|\mathbf{n}_{j}^{T}(\overline{\mathbf{c}}_{i} - \overline{\mathbf{c}}_{j})|}{\|\overline{\mathbf{c}}_{i} - \overline{\mathbf{c}}_{j}\|} \geq \cos(60^{\circ}) \end{aligned}$$

- Combine airway sections into branch segments
- Requirements:
 - Airway sections form tubeSegment without leakage
- Retain 1,500 strongest

- Combine airway sections into branch segments
- Requirements:
 - Airway sections form tubeSegment without leakage
- Retain 1,500 strongest

Step 4: Branch Segment Connection

Step 4: Branch Segment Connection

- Connect each branch segment to conservative segmentation
- Connections constrained by interpolated surfaces

- Connected branch segments = graph-theoretic tree
- True branches have high benefit and low cost
- Thresholding individual nodes a bad idea

- Connected branch segments = graph-theoretic tree
- True branches have high benefit and low cost
- Thresholding individual nodes a bad idea

- Connected branch segments = graph-theoretic tree
- True branches have high benefit and low cost
- Thresholding individual nodes a bad idea

- Connected branch segments = graph-theoretic tree
- True branches have high benefit and low cost
- Thresholding individual nodes a bad idea

- Connected branch segments = graph-theoretic tree
- True branches have high benefit and low cost
- Thresholding individual nodes a bad idea

Algorithm 1 Locate $\mathbf{t}^* = \arg \max\{B(\mathbf{t}) - rC(\mathbf{t}) \text{ such that } \mathbf{t} \text{ is a non-relaxed subtree of } \mathcal{T}\}$

1: Let $\{m_j : j = 0, 1, ..., V - 1\}$ be a depth-first ordering of the vertices in \mathcal{T} . 2: // Note that $m_i = P[m_i] \Rightarrow i > j$. Specifically, $m_{V-1} = 0$, the root of \mathcal{T} . 3: $S_k \leftarrow 0$ for all $k \in \{0, ..., V - 1\}$ 4: // S_k is the maximum achievable score for a subtree of \mathcal{T} rooted at k. On termination, $S_0 = B(\mathbf{t}^*) - rC(\mathbf{t}^*)$. 5: $v_k \leftarrow 0$ for all $k \in \{0, \dots, V-1\}$ 6: // Binary indicator variables used to reconstruct t^{*}. Here, $v_k = 1 \Rightarrow k$ is needed by P[k] to achieve $S_{P[k]}$. 7: for all j = 0: V - 1 do $S_{m_i} \leftarrow b_{m_i} - rc_{m_i}$ 8: for all k such that $P[k] = m_i$ do 9: // Because the vertices are considered in a depth-first order, S_k has already been computed. 10:if $S_k > 0$ then 11:12: $S_{m_i} \leftarrow S_{m_i} + S_k$ $v_k \leftarrow 1$ 13:// A top-down algorithm builds \mathbf{t}^* from the $\{v_k\}$. 14: $t_k^* \leftarrow 0$ for all $k \in \{1, ..., V - 1\}, t_0^* \leftarrow 1$ 15: for all j = V - 1 : 0 do if $t_{m_i}^* = 1$ then 16:for all k such that $P[k] = m_i$ do 17:18:if $v_k = 1$ then $t_k^* \leftarrow 1$ 19:20: return t^*

- Linear-time algorithm provides graph partition
- Final segmentation union of:
 - Conservative segmentation
 - Retained branch segments
 - Connection voxels for retained branch segments

- Automatic algorithm uses global information
 - Overcome "rough patches"
 - Not as useful for tree "leaves"
- Two key tasks for image-guided bronchoscopy
 - Route extension
 - Visual landmark extraction

- Automatic algorithm uses global information
 - Overcome "rough patches"
 - Not as useful for tree "leaves"
- Two key tasks for image-guided bronchoscopy
 - Route extension
 - Visual landmark extraction

- Automatic algorithm uses global information
 - Overcome "rough patches"
 - Not as useful for tree "leaves"
- Two key tasks for image-guided bronchoscopy
 - Route extension
 - Visual landmark extraction

- User interacts with oblique image cross-section
- Peripheral branch added in a few clicks
- Method inspired by previous 2D/3D livewire approaches
 - Mortensen and Barrett (Graph. Models and Image Proc. 1998)
 - Falcão et al. (Graph. Models and Image Proc. 1998)
 - Lu and Higgins (Int. Jnl. Comp. Assisted Radiology and Surgery 2007)

- User interacts with oblique image cross-section
- Peripheral branch added in a few clicks
- Method inspired by previous 2D/3D livewire approaches
 - Mortensen and Barrett (Graph. Models and Image Proc. 1998)
 - Falcão et al. (Graph. Models and Image Proc. 1998)
 - Lu and Higgins (Int. Jnl. Comp. Assisted Radiology and Surgery 2007)

- User interacts with oblique image cross-section
- Peripheral branch added in a few clicks
- Method inspired by previous 2D/3D livewire approaches
 - Mortensen and Barrett (Graph. Models and Image Proc. 1998)
 - Falcão et al. (Graph. Models and Image Proc. 1998)
 - Lu and Higgins (Int. Jnl. Comp. Assisted Radiology and Surgery 2007)

Results—Automatic Segmentation

Results—Automatic Segmentation

- More than 40 successful cases to date
 - Multiple scanners and reconstruction kernels
 - One set of algorithm parameters for all results
- Run times:

Step (section number)	Mean running time (in seconds)	Standard deviation (in seconds)
Conservative segmentation (2.1)	4.3	0.9
Isotropic interpolation (2.2.1)	21.4	5.8
Connected component filter $(2.2.2)$	98.5	37.5
Airway section construction $(2.2.3)$	14.0	3.7
Branch segment definition (2.3)	22.6	3.1
Branch segment connection (2.4)	4.4	0.8
Graph partitioning algorithm (2.5)	< 0.1	0.0
Total	2 min 46 sec	41.7

- 2.6 GHz PC with 4GB RAM running Windows XP

- Software constructed using Visual C++ with OpenGL for visualization

Results—Automatic Segmentation 2 Visual comparisons with adaptive region-growing algorithm

- Blue—previous approach
- Green—proposed automatic algorithm

Results—Automatic Segmentation 3

Comparison with manually defined "gold standard" tree
 271 total branches

Bronchial order	Number of branches	Proportion of Correctly Extracted Airways	
	in manually defined tree	Proposed Method	Adaptive RG ^{12, 22, 23}
Main/Lobar	17	100%	100%
Segmental	20	100%	91%
1^{st} generation subsegmental	38	94%	58%
2^{nd} generation subsegmental	58	87%	39%
$\geq 3^{rd}$ generation subsegmental	138	73%	26%

• Strong performance in periphery with no false positive branches

Results—Human Peripheral Feasibility Study Generation 3: (RML takeoff)

Generation 4

- Airways segmented using proposed system
- 2.8 mm Olympus ultrathin bronchoscope
- Traversed 13 airway generations
- To be presented at ATS2008

Results—Human Peripheral Feasibility Study 2 Generation 5 Generation 6

Generation 7

Generation 8

Results—Human Peripheral Feasibility Study 3 Generation 10 Generation 11

Generation 12

Generation 13

Conclusions

- Automatic algorithm has several novel components
 - Airway section filter
 - Global graph-partitioning algorithm
- Interactive segmentation toolkit
 - Critical local areas
 - Useful for image-guided bronchoscopy to periphery
- Future work
 - More extensive testing/validation/comparisons
 - Continue peripheral human studies

• Companion papers

- J. D. Gibbs, M. W. Graham, and W. E. Higgins, "Integrated system for planning peipheral bronchoscopic procedures," in *SPIE Medical Imaging 2008: Visualization, Image-Guided Procedures and Modeling*
- M. W. Graham, J. D. Gibbs, K. C. Yu, D. C. Cornish, M. S. Khan, R. Bascom, and W. E. Higgins, "Image-guided bronchoscopy for peripheral nodule biopsy: A human feasibility study," in *Proceedings of the American Thoracic Society* 2008 International Conference, May 2008

Acknowledgements

National Cancer Institute of the NIH

- Grants #CA074325 and #CA091534

We would like to thank Drs. Rebecca Bascom and Muhammad Khan from Penn State's Hershey Medical Center for providing CT image data.

The Multidimensional Image Processing Lab at Penn State

