Image-Guided Bronchoscopy for Peripheral Nodule Biopsy: A Phantom Study

PENNSTATE

<u>W.E. Higgins</u>, K. Yu, S. Merritt, L. Rai, J. Gibbs, M. Graham, K. Lu, D. Cornish, V. Patel, and R. Bascom *Penn State University College of Engineering and College of Medicine University Park and Hershey, PA*

American Thoracic Society (ATS) 2007, Session D14: Interventional Bronchoscopy San Francisco, CA, 23 May 2007.

Introduction

- Bronchoscopy of peripheral nodules feasible
 - High-resolution 3D multi-detector CT (MDCT) scanners
 - Ultrathin bronchoscopes
- But, reliable bronchoscopic biopsy difficult
 - 3D CT-based preplanning problematic
 - Several airway generations must be traversed physician gets lost?!
 - Blind difficult to determine biopsy site

Objective:

- Assess performance of a computer-based system
- Phantom study

Prior Work: Bronchoscopy of the Periphery

Bronchoscopy of peripheral nodules

Baaklini *et al.* (*Chest* 2000): $14\% \rightarrow 31\%$ yield

Electromagnetic sensor-based guidance

Schwarz *et al.* (*Respiration* 2003); Gildea *et al.* (*Chest* 2006)

CT-derived virtual-bronchoscopic (VB) guidance

- Geiger *et al.* (*SPIE Med. Imaging* 2005)
- Asano et al. (Bronchology 2002, AJRCCM 2006)

Workflow for Our System

1. 3D CT-Based Preplanning

- Airway tree
- Nodules
- Routes to nodules

3D CT Image

PENNSTATE

tree, routes, nodules

2. Guided Bronchoscopy

- Simple PC interface
- CT, video registered
- Augmented vision

Bronchoscopic Video

CT-based VB view

Guidance Strategy (Briefly)

PENNSTATE

- 1. Start virtual bronchoscope at a reference location (main carina)
- 2. Physician moves bronchoscope nearby
- 3. Registration/Fusion is invoked; **Blue Line** indicates correct path
- 4. Repeat process until nodule reached
- 5. Blue Arrow final biopsy site

Study Set-up 1: Phantom

ABS-plastic phantom of airway tree

By Stratasys, Inc.

Derived from human 3D MDCT scan

- **706** 512x512 slices
- resolution: $\Delta x = \Delta y = 0.67$ mm, $\Delta z = 0.5$ mm
- Case 21405.3a

Study Set-up 2: 10 Predefined ROIs

10 nodules defined in 2 lungs

- Nodule = region of interest (ROI)
- 2.4mm diameter spheres
- Placed 3-8 generations deep
- In 3D MDCT scan data

PENNSTATE

Study Set-up 3: Display

3D Airway Tree + BLUE route and ROI

PENNSTATE

Live video + CT-based VB view

Standard approach: MDCT slices **Guided** approach: All 3 views

Study Set-up 4: Apparatus

- 1. Olympus BF XP260F ultrathin 2.8mm diameter
 - 1.2mm working channel
 - Closed forceps \rightarrow point to biopsy site
 - Successful biopsy = within 5mm of ROI center
- 2. Phantom secured in a sealed box
- 3. Computer next to bronchoscope
- 4. Technician assists with computer, data collection

Study Set-up 5: Protocol

- 1. 12 Physicians involved
 - 6 staff physicians
 - 6 fellows in training
- 2. Each Physician performed test two ways: Standard, Guided
 - Tests spaced at least two weeks apart (learning effect?)
- 3. ROIs presented randomly in all tests
- 4. Physician gave confidence (1 5) at each bifurcation
- 5. Physician's voice and proceedings recorded on DVD

Biopsy Success (Hit) Rate

	STANDARD		IMAGE-GUIDED		
	Hit Rate %	Position Error mean±SD (Range)	Hit Rate %	Position Error mean+/-SD (Range)	p Value
Overall	43.3%	9.74 ± 9.09 (0.19-39.12)	94.2%	2.24 ± 2.25 (0.30-13.85)	< 10 ⁻¹⁵
Clinical Fellows	45.0%	9.46 ± 8.92 (0.72-38.72)	98.3%	$\begin{array}{c} 1.79 \pm 1.24 \\ (0.30\text{-}6.95) \end{array}$	< 10 ⁻⁰⁸
Experienced Physicians	41.7%	$\begin{array}{c} 10.03 \pm 9.32 \\ (0.19\text{-}39.12) \end{array}$	90.0%	2.69 ± 2.87 (0.35-13.85)	< 10 ⁻⁰⁶

Guidance Dramatically Increases Success Rate:

- Standard (Unguided) 43% success rate
- Guided 94% success rate

Guidance Dramatically Increases Accuracy:

Biopsy position error reduced from 10mm to 2mm

Biopsy Success Rate By Airway Generation Number

• Standard: performance deteriorates with increasing airway generation

PENNSTATE

• Guided: consistent performance

Decision Confidence (1-5)

Generation #	Overall		
(# of ROIs)	Standard	Guided	
1 (10)	5.00	5.00	
2 (10)	4.97	4.99	
3 (9)	4.81	4.96	
4 (7)	4.71	4.96	
5 (4)	4.67	4.94	
6 (4)	4.57	4.92	
7 (1)	4.23	4.92	

- Standard: Physician stays confident even though performance drops
- Guided: Physician consistently very confident throughout

Impact of Method Order on PENNSTATE Performance (Learning Effect?)

	All Physicians		
	Standard	Guided	
No Experience	46.7%	95.0%	
After Exposure to Other Method	40.0%	93.33%	
Increase in Hit Rate	-6.7% (+4 misses)	-1.67% (+1 miss)	
One-tailed p Value	0.842	0.781	

• Order of tests had no significant impact

 \rightarrow No learning effect

Conclusion

- Standard: 43% success Guided: 94% s
- Standard: 10mm error Gu

Guided: 94% success

- r Guided: 2mm error
- Reduce impact of experience and skill?
- Potential for bronchoscopy of peripheral nodules
- Asano et al., AJRCCM 2006: CT-based VB guidance sufficient!

Acknowledgments:

NIH NCI grants #CA074325, #CA091534 NIH NIBIB grant #EB000305

Biopsy Success Rate – By Lobe

• Standard: performance poor for most lobes

PENNSTATE

• Guided: high consistent performance

Biopsy Success Rate - Location

- Standard: performance poorer for non-carinal sites
- Guided: performance not dependent on location

Live Bronchoscopic Guidance - Movie
Blue line shows desired route
Blue arrow shows final destination

Dist to ROI2 Center = 7.0 mm Videobronchoscope

Virtual View

CT-Based Route Planning Performance Deteriorates Rapidly

Generation Number

Dolina *et al.*, "Comparison of Transverse Chest CT Images and a Virtual Navigation Endoluminal Image for Bronchoscopy Path Selection to Endoluminal Pulmonary Nodules," *ATS 2006*.

Fluoroscopy can be very misleading

PENN<u>State</u>

Coronal Projection

Route appears to go to nodule

Sagittal Projection

Route actually going the wrong way!